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R�esum�e� L�analyse s�emantique des variables num�eriques d�un programme consiste
�a d�eterminer statiquement et automatiquement des propri�et�es v�eri��ees par celles�ci
�a l�ex�ecution� Di��erentes classes de propri�et�es 	relations d��egalit�e
 d�in�egalit�e
 de
congruence� ont �et�e �etudi�ees� Cette th�ese propose la g�en�eralisation d�une partie
des mod�eles pr�ec�edents� Plus particuli�erement
 en utilisant le cadre formel fourni
par l�interpr�etation abstraite
 nous proposons
 d�une part
 un ensemble de propri�et�es
g�en�eralisant les intervalles et les classes de congruences de Zet
 d�autre part
 une
g�en�eralisation des trap�ezo�
des et des syst�emes d��equation lin�eaires de congruence de
Zn� La d�e�nition d�une abstraction rationnelle de ces di�erentes propri�et�es permet
d�obtenir des approximations
 dont la complexit�e reste polynomiale en le nombre de
variables consid�er�ees
 des op�erateurs sur les propri�et�es enti�eres� Ces analyses
 en
g�en�eral plus pr�ecises que la combinaison de celles dont elles sont issues
 permettent de
choisir dynamiquement le type de propri�et�es 	entre relation d�in�egalit�e ou de congru�
ence� fournissant une information pertinente sur le programme consid�er�e� Le mod�ele
relationnel mis au point correspond �a de nombreux motifs d�ecrits par les indices des
tableaux utilis�es dans le domaine du calcul scienti�que� Il est donc particuli�erement
bien adapt�e �a l�analyse d�indices de tableaux
 voire �a la repr�esentation abstraite de
tableaux d�entiers�

Semantic analysis of program numerical variables consists in statically and automat�
ically discovering properties veri�ed at execution time� Di�erent sets of properties
	equality
 inequality and congruence relations� have already been studied� This thesis
proposes a generalization of some of the below patterns� More speci�cally
 the ab�
stract interpretation is used to design on the one hand a set of properties generalizing
intervals and cosets on Zand on the other hand
 a generalization of trapezoids and
linear congruence equation systems onZn� A rational abstraction of these properties
is de�ned to get safe approximations
 with a polynomial complexity in the number
of the considered variables
 of the integer properties operators� Those analyses
 more
precise than the combination of the analysis they come from in general
 allow to dy�
namically choose the kind of properties 	inequality or congruence relations� leading to
relevant information for the considered program� The described relationnal analysis
corresponds to numerous patterns encountered in the �eld of scienti�c computation�
It is very well adapted to the analysis of array indices variables and also to the abstract
description of integer arrays�
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INTRODUCTION

La partie la plus importante du temps n�ecessaire 
a l�ex�ecution de la plupart des programmes
de calculs scienti�ques est attribu�ee aux boucles e�ectuant des op�erations sur des tableaux de
donn�ees	 La transformation et l�optimisation de ces boucles �LKK��� AK��� AK��� FW���
AN��� WL��b� en vue de la g�en�eration du code adapt�e 
a la machine�cible n�ecessite une bonne
compr�ehension� lors de la compilation� de la structure des acc
es aux tableaux qui y sont e�ec�
tu�es� lorsque ceux�ci ne sont pas consid�er�es comme des scalaires �CCK���	 Des �etudes pragma�
tiques �SLY��� EHLP��� ont �et�e men�ees� elles justi�ent les m�ethodes plus syst�ematiques parmi
lesquelles on trouve par exemple la reconnaissance par idiomes �JD��� PP��� AHI���	 De tr
es
nombreuses analyses de d�ependances qui permettent de valider la correction des transforma�
tions de boucles propos�ees ont �et�e mises au point dans �GS��� Fea��a� Wal��� D�H��� BK���
MHL���	 D�autres m�ethodes analysent la localit�e des donn�ees r�ef�erenc�ees lors d�un acc
es 
a
un tableau a�n d�am�eliorer l�ad�equation du code g�en�er�e 
a la distribution et 
a la hi�erarchie de
la m�emoire de la machine�cible dans �TP��� WL��a� GJG��� HKT��� KLS��� Ger���	 Toutes
ces analyses reposent sur l�observation que la majorit�e des acc
es aux �el�ements des tableaux
sont g�en�eralement des fonctions lin�eaires des indices des boucles les englobant �SLY���� du
moins c�est le seul probl
eme traitable de fa
con exacte �Dow��� et sont donc mises en �echec
par l�utilisation de tableaux d�indirections	 C�est pour combler cette lacune que nous nous
proposons de d�e�nir une m�ethode e�cace qui permette d�analyser statiquement les tableaux	
Le tout premier choix 
a e�ectuer pour mettre au point notre analyse est celui du mod
ele

utilis�e pour trouver une approximation de la valeur exacte d�un tableau	 La repr�esentation
d�un tableau par une fonction� qui est intuitivement la plus �evidente� est malheureusement un
mauvais point de d�epart car elle m
ene 
a des algorithmes de co�ut exponentiel �Jou���	 Nous
avons donc choisi de repr�esenter un tableau par une relation entre la valeur de ce tableau et
son indice ��eventuellement de dimension sup�erieure 
a un�	
Le second choix� tout autant guid�e par un souci d�e�cacit�e� consiste 
a utiliser des relations

sur les rationnels au lieu de relations sur les entiers �rappelons que les valeurs et indices d�un
tableau d�indirection sont des entiers�	
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� INTRODUCTION

Pour ce qui est de la forme des relations utilis�ees� elles doivent au moins pouvoir exprimer
les matrices bandes� triangulaires et autres caract�erisations fr�equentes de la localisation des
valeurs des �el�ements d�un tableau �Cox��� BK���	 D�autre part� des analyses relationnelles
d�esormais classiques existent	 C�est le cas des �egalit�es �Kar��� et in�egalit�es �CH��� lin�eaires
entre variables et des relations de congruences lin�eaires entre variables �Gra��b�	 Nous avons
choisi de nous baser� d�une part� sur un sous ensemble des poly
edres convexes et� d�autre part�
sur les relations de congruences lin�eaires	
L�analyse par in�egalit�es lin�eaires� autrement dit par poly
edres convexes� peut �etre simpli�

��ee en restreignant les orientations possibles des di��erentes faces du poly
edre	 Par exem�
ple� en consid�erant que ces faces doivent �etre parall
eles deux 
a deux et que pour la moiti�e
d�entre elles leurs normales sont lin�eairement ind�ependantes� on obtient un cas particulier
que nous nommons trap�ezo��de	 Le mod
ele sur lequel s�appuie l�analyse que nous nous pro�
posons de construire dans la partie � est une g�en�eralisation du trap�ezo��de et de la classe de
congruence rationnelle relationnelle �solution d�un syst
eme d��equations lin�eaires de congru�
ences rationnelles� et correspond donc aux solutions rationnelles d�un syst
eme d��equation de
congruence 
a r�esidu born�e de la forme �

��x� � ��x� � � � �� �nxn � � mod �q� � � �a� b����

dont tous les coe�cients sont rationnels	 Par interpr�etation abstraite �CC��b�� on obtient
donc une premi
ere analyse relationnelle de congruence de trap�ezo��des concernant les variables
enti
eres d�un programme	
Cette analyse rationnelle des variables enti
eres peut �etre rendue plus pr�ecise en consid�erant

pour chaque congruence de trap�ezo��des l�ensemble de points entiers qu�elle contient	 Ce travail
est e�ectu�e dans la partie � dans le cas n  � de la d�e�nition ���	 On s�aper
coit que l�ensemble
des points entiers d�un ensemble d�intervalles 
a extr�emit�es rationnelles de la forme

f�a� b�� �a� q� b� q�� �a� �q� b� �q�� � � � � �a� kq� b� kq�� � � �g

est la r�eunion de classes de congruences enti
eres de modulos identiques

fl�mZ� l� � �mZ� � � � � l� k� �mZ� � � � � u�mZg

o
u l� u�m et � sont entiers et � et m sont premiers	 Ce passage au mod
ele entier ne doit �etre
utilis�e au cours de l�analyse que dans les phases critiques �par exemple pour tester si un objet
contient des points entiers ou non� de mani
ere 
a ne pas augmenter le co�ut de l�analyse	 Ce
mod
ele �etend celui des intervalles de �CC��� et des congruences de �Gra��� et l�analyse est
par exemple plus pr�ecise qu�une analyse de !ot de donn�ees comme �Gup���� ce qui n�est pas
surprenant puisque le mod
ele des intervalles est d�ej
a plus puissant que �Gup��� �voir l�exemple
trait�e dans �CC��a��	
Mise 
a part son int�egration dans un certain nombre de m�ethodes de d�etermination ap�

proch�ee des d�ependances de donn�ees ou bien d�estimation de la localit�e des donn�ees comme an�
nonc�e initialement et d�ecrit dans le chapitre VII� notre analyse permet en outre d�automatiser
l�instanciation de programmes g�en�eraux 
a des cas de �gure particuliers	 Indirectement� elle
est aussi int�eressante pour des analyses qui peuvent se formuler num�eriquement comme le
partage de donn�ees ou bien l�analyse des programmes communicants	
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Ce travail est constitu�e de trois parties distinctes	 Tout d�abord� des rappels concernant
l�analyse s�emantique par interpr�etation abstraite et plus particuli
erement les analyses s�eman�
tiques des propri�et�es de congruences y sont donn�es� on y trouvera d�une part la description
du cadre de travail g�en�eral ainsi qu�un rappel des analyses classiques d�evelopp�ees dans la
litt�erature concernant les variables num�eriques et fond�ees sur une interpr�etation abstraite� et
d�autre part les propri�et�es sp�eci�ques aux analyses de congruences qui sont utilis�ees dans la
suite de la th
ese	
La seconde partie de notre travail est d�evolue 
a la construction de l�analyse s�emantique

des congruences d�intervalles� elle est elle�m�eme divis�ee en deux chapitres	 Dans un premier
temps� nous construisons deux ensembles de propri�et�es caract�erisant des ensembles d�entiers
puis de rationnels et d�ecrivons les relations fondamentales de comparaison et d��equivalence
sur ces ensembles	 Une fois ces contructions e�ectu�ees� nous �etablissons la connexion entre ces
deux ensembles de propri�et�es� celle�ci permet de calculer� en temps constant� dans l�ensemble
des propri�et�es rationnelles une approximation des op�erations d�un co�ut non constant sur les
propri�et�es enti
eres	 La construction de cette interpr�etation abstraite est compl�et�ee par la
d�e�nition des instructions �ou primitives� abstraites et illustr�ee par un exemple	
La troisi
eme partie de notre th
ese correspond 
a la construction de l�analyse s�emantique par

congruence de trap�ezo��des	 Le plan de cette construction est en tout point semblable 
a celui
de la partie pr�ec�edente	 Cette analyse relationnelle g�en�eralise l�analyse non relationnelle par
congruence d�intervalles� de nombreuses op�erations relationnelles sont r�eduites 
a des op�era�
tions non relationnelles construites auparavant	 Quelques applications originales� notamment
pour la repr�esentation abstraite de tableaux d�entiers� sont donn�ees dans un dernier chapitre	
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CHAPTER I

STATIC ANALYSIS BY ABSTRACT INTERPRETATION

We introduce in this chapter the basic features of static program analysis based on oper�
ational semantics� called abstract interpretation and designed by P	 and R	 Cousot �CC���	
The abstract interpretation framework �CC��b� is here instantiated to the very special case
for which it will be used in the rest of this work	 The main characteristic that makes abstract
interpretation a very powerful generalization of classical data !ow analysis �MR��� is that
its semantic bases provide analyses that can be easily proved correct and that the use of
widening and narrowing operators allow to deal with in�nite domains	 Abstract interpreta�
tion is now widely used for static analysis in a great number of other �elds than numerical
variables analysis� for example logic program analysis �CC��a�� type inference �Mon��� and
alias analysis �Deu���	
The �rst part of this chapter brie!y exposes the abstract interpretation framework while

the second gives examples of such analyses in the �eld of program numerical variables	

�� The global design of the analysis

The �rst choice concerns the description of the meaning of a program	 Two orthogonal
concepts that are denotational �with functions that map program inputs to program outputs�
and operational �with transition systems that describe every small step of the program�
semantics are designed for this goal	 Following �CC���� we take as standard semantics an
operational semantics consisting of the transition system

�S� �� �� ��

where S is a set of program states� � a transition relation binding a state to its possible
successors� � � S a set of initial states and � � S a set of �nal states	 Every program is
associated with a transition system �for example� the set S of states of a program with m
control points operating on n distinct integer variables is ��� m��Zn�	
Then the forward collecting semantics is the sequences of �nite partial execution traces�

starting with an initial state� in which two consecutive states satisfy the transition relation	
In order to discuss program invariance properties� we approximate the forward collecting
semantics by the descendant states of the initial states� considering sets of states occurring in

��



�� I� STATIC ANALYSIS BY ABSTRACT INTERPRETATION

the original sequences of �nite partial execution traces �indeed� program invariance properties
do not deal with the execution order�	

The so�called concrete semantic domain is the powerset P�S� of the set S	 The concrete
semantic function� which is used for associating its concrete semantics to each program� is
the strongest post�condition operator

sp�� � P�S� � P�S�
I �� � � fsj�s� � I � �s� s�� � �g

More precisely� the meaning of a program associated to the transition system �S� �� �� �� is
the least �xpoint of the operator sp�� 	 Unfortunately� most of the time this �xpoint is un�
computable� and here� abstract interpretation introduces the fundamental concept of approx�
imation	 The idea is to introduce a new domain somehow connected to P�S� instead of the
semantic domain� on which an approximation of the �xpoint equation is computable� provid�
ing an approximation of the exact solution	 The connection is modeled by the use of semi�dual
Galois connections between posets� � �O	��� for an inverse order on the abstract domain L��	
For more precisions and de�nitions about the lattice theory see �Bir���	

Definition � �Galois connection ��� 	��� Let L and L� be two posets	 The pair of
maps ��� 	� � �L � L����L� � L� is a semi�dual Galois connection if � and 	 are monotonic
and

I v 	 	 � 
 � 	 	 v I

where I is the identity function �either on L or on L��	 � is called the abstraction function
and 	 the concretization function	 Moreover� if � is surjective then L� is isomorphic to a
Moore family of L	

Hence the approximation is de�ned by a semi�dual Galois connection or dually by a Moore
family �a meet closed subset of the semantic domain�	 The next theorem establishes the
possibility of computing a safe approximation of the wanted least �xpoint on the concrete
domain by a �xpoint computation on the abstract domain	

Theorem � �Fixpoint approximation �Cou����� Let L and L� be two complete lattices�
��� 	� a semi�dual Galois connection� F a monotonic operator on L and F � a monotonic
operator on L� greater than �	F 		� The least �xpoint of F is less than 	or safely approximated
by
 the concretization of the least �xpoint of F ��

This property is generalized to complete partial orders in �CC��b�	 If the abstract domain is
in�nite or has too long ascending chains� we might be interested in approximating the least
�xpoint computation in the abstract domain itself	 The widening operator extrapolates the
iteration process	

�Partial ordered sets�
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Definition � �Widening operator r �CC����� Let L be a complete lattice	 The oper�
ator r � L� L� L is a widening if

��� it is greater than the least upper bound on L and
��� for all increasing chain �xi�i�Nof elements of L� the series de�ned by y�  x� and

yn��  ynrxn�� is stationary after a �nite number of steps	

Practically� instead of a single �xpoint equation �shown to be the exact invariant of the
program�� a �xpoint equation system is considered� where the original equation domain is
partitioned �with respect to the program control points for example�	 Each elementary pro�
gram statement is then approximated by a monotonic operator on the abstract domain	
The design of an abstract interpretation is divided into three steps	 First an abstract

domain �with the corresponding abstraction and"or concretization� is extracted from the
concrete semantic domain� possibly with an isomorphism to its machine representation if it
is not directly implementable	 Secondly� a set of abstract operators approximating as close
by as possible �when the best one is not computable� the program statements are provided	
Finally� the convergence of the iteration process for computing the �xpoint approximation is
ensured� possibly introducing a widening operator	
Only the integer variables are of interest for our analysis� hence in a �rst approximation

the set of considered states will be Zn where n is the number of variables in the program
and the concrete semantic domain is the powerset P�Zn� �standard semantics�	 For the
presented analyses� the characterized states are either relationally approximated # and the
semantic domain is really P�Zn� # or they are non relationally approximated and hence
P�Zn� is replaced by P�Z�n	 The next approximation introduces a set CP of properties of
speci�c interest on integers� hence P�Zn� is now approximated by CP 	 Then for machine
representation requirements� the integer properties are denoted as rational subsets �using the
set AP �� the intersection of which withZnwill consist of the preceding integer properties	 Two
abstractions are considered that are the one between P�Zn� and CP and the other between
CP and AP 	 CP is the abstract domain of the �rst approximation although it is the concrete
domain of the second	 The �rst abstraction is modeled by a single concretization function
	� � CP � P�Zn� giving the meaning of an integer property in terms of integer tuples �in fact
	� is the extension of the identity to CP �� the approximation ordering is therefore induced by
the set inclusion relation on the powerset of Zn	 The latter connection between concrete and
abstract domain is established via a pair of abstraction and concretization function ��� 	�	
Examples of such connections appear in Chapters IV and VI where the concrete domain is
CC �respectively RCC� and the abstract one is IC �respectively TC� with the particularity
that ��� 	� �respectively ����� 	���� are not Galois connections	
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�� Numerical variables analyses

This section presents some of the existing static analyses described in the literature dealing
with program numerical variables	 These are partitioned between the non relational and the
relational ones	

���� Non relational analyses� The program numerical variables are considered sepa�
rately	 The interval analysis generalizes �i	e	 is more precise than� the constant propagation
and the sign analysis� the congruence analysis generalizes the parity analysis and the constant
propagation	 All these analyses concern either integer or rational values and have P�Z� as
semantic domain for their integer valued version	 The abstract operators are generally the
best ones for the considered approximation	

Analysis of signs

The considered Moore family is here�
��Z���Z��� f�g�Z��Z��Z

�
An example of abstract statement is given for the abstract sum operator �� it is point by
point de�ned by�

� � x  �� Z���Z��  Z� Z��� f�g  Z��� � � �

There is no need here for a widening because the lattice is �nite and of height �	

Constant propagation �Kil���
The abstract lattice is here the set of all integer singletons� the empty set and Zordered by
inclusion	 The abstract sum operator � is de�ned by�

fxg � fyg  fx� yg� �� fyg  ��Z� fyg  Z

and is commutative	 The height of the lattice is �	

Interval analysis �CC���
The abstract lattice is the set of possibly in�nite integer intervals �a� b� where a� b � Z�
f
����g and a � b� completed with the emptyset and ordered by the set inclusion induced
order	 The abstract sum operator � is de�ned by�

�a� b�� �c� d�  �a� c� b� d�� �� x  �

and is commutative	 This lattice has an in�nite height and a widening is needed� which
extrapolates the increase of the interval bounds

�a� b�r�c� d�  �if c 
 a then 
� else a� if d � b then �� else b�

and its result is � when at least one operand is �	

Parity analysis

The abstract domain is the four element lattice f�� �Z� ���Z�Zg	 The abstract sum operator
� is de�ned by�

� � x  �� Z� x  Z� �Z� �Z �� � �Z�� �� � �Z�  �Z� �� � �Z�� �Z �� � �Z�
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and is commutative	 There is no need of widening here	

Congruence analysis �Gra���
The rational version of this analysis is exposed in the next chapter	

All these non relational analyses are rather simple but do not provide much information	
They are not of interest for representing general array indexes� which is our purpose	

���� Relational analyses� These analyses compute approximations of the exact invari�
ants where all the numerical variables are considered simultaneously� hence relationally	 The
linear constraints analysis generalizes the non relational interval analysis and the linear equal�
ities analysis� while the linear congruences analysis generalizes the non relational congruence
analysis	

Linear equalities �Kar���
It considers the systems of equations such as

nX
i��

�ixi  �

Linear inequalities �CH���
The semantic domain is P�Qn� and the abstract domain is the set of convex polyedras of Qn

represented by systems of equations of the kind

nX
i��

�ixi � �

The widening operator which is very frequently needed in such an analysis is based on ex�
perimentation and on the speci�c representation of a convex polyhedron by its system of
generators	

Linear congruences �Gra��b�
The semantic domain is P�Zn� or P�Qn�	 The abstract domain corresponds to the solutions
of the systems of linear congruence equations of the kind�

nX
i��

�ixi � c mod �q�

in Zn or Qn	 More details are given on this analysis in the next chapter and very often in the
rest of this work	

The motivation for designing a new non relational integer semantic analysis is �rst to be able�
using only one analysis� to discover program invariant approximations which would have
been determined either by the interval or by the congruence analysis	 This corresponds to
automatically deciding� during the static analysis� which one of these analyses is convenient
for every program point	 The second goal is to determine invariant approximations when
both interval and congruence analyses would have failed	

�x � y mod 	q� means �k �Z x � y � kq
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ind �� ��

while nn � ind do begin

for ii �� � to ind do begin

m �� ��ii 	��

for j �� 
 to ����nn 	 m� div 
�ind� do

i �� m � 
�ind�jj�

�S� ��� �� data�i� � ��� �

�T� ��� �� data�i��� � ��� end end

ind �� ��ind end�

Figure I��� An extract of Fast Fourier Transform algorithm	

Let us consider the Fast Fourier Transform algorithm of �gure I	� coming from �PFTV���	
The accesses to the array data in statements fSg and fTg are summarized by the relation

�
m � � mod ��� � �
m � � mod ���

where � stands for the indexes of accessed elements of the array data	 Typically� congruence
analysis will fail to summarize such information because of the consecutiveness of the two
accessed elements� while interval analysis will fail because of the congruence character of the
loop indices jj and ind in the expression of i	 Other interesting information in order to
parallelize the execution of these three nested loops could result of the parity of variable m

and of the bounds on variable ii	 This shows the need for an ambivalent analysis	



CHAPTER II

CONGRUENCE SEMANTIC ANALYSIS

In his PhD thesis �Gra��a�� Granger has designed� using a common algebraic framework� four
semantic analyses dealing with congruence properties of numerical variables	 These analyses
are classi�ed into relational and non relational ones on one hand and into integer and rational
ones on the other hand	 In order to build our analyses� we are going to use many properties
of Granger�s rational analyses	 The goal of this chapter is to recall the general framework
of congruence semantic analyses and the main properties that are used in the rest of this
work	 All the properties �guring in this chapter are proved in �Gra��a�	 After the formal
de�nition of general cosets� �rst a special kind of cosets of the group of rational numbers Q
are considered and� then� properties of the linear analysis based on the use of a special kind
of cosets of Qn are recalled	

Definition � �Cosets�� Let G be an abelian group and H be a subgroup of G	 The
equivalence classes of the equivalence relation of the kind x
 y � H are called cosets modulo
H 	 They have the form

a �H  fx � G 
 �h � H� x  a� hg

where a is an element of the coset	

The set of cosets of an abelian group is a lattice and hence �ts the semantic analysis framework	

��
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�� Rational arithmetical congruence analysis

The usual way to build a set of congruence properties is �rst to characterize a set of relevant
subgroups of the considered original abelian group and then to consider the corresponding
lattice of cosets	 This is the purpose of the theorem � and the de�nition �	

Theorem � �Finitely generated subgroups of Q�� The �nitely generated subgroups
of Q have the form qZ	noted hqi
 where q � Q�

Theorem � Definition � �Rational arithmetical cosets�� The join of f��Qg and
of the cosets p � qZ	noted p hqi where p and q are rational numbers
 of Q modulo �nitely
generated subgroups is a Moore family of P�Q�� it is called the lattice of rational arithmetical
cosets�

Before we specify the operations on this lattice� we extend the arithmetical operators to
rational numbers	 Based on the divisibility notion stating that given two rational numbers p
and q� p is a divisor of q if and only if there exists an integer k such that q  kp the following
extensions of the arithmetical operators hold	

Definition � �Arithmetical operators extensions�� The euclidean division� the
modulo� the greatest common divisor and the least common multiple are de�ned by

div � Q�Q�� � Z mod � Q�Q�� � Q�
a

b
� c
d

�
�� sgn�bc�ad div jbcj

�
a

b
� c
d

�
�� sgn�bc�ad mod jbcj

jbdj

gcd � Q� �Q� � Q� lcm � Q� �Q� � Q��
a

b
� c
d

�
�� gcd�ad�bc�

bd

�
a

b
� c
d

�
�� lcm�ad�bc�

bd

Now we characterize the operations on the complete lattice of rational arithmetical cosets�
the comparison� the least upper and the greatest lower bounds	

Proposition � �Lattice operations�� Let p�� q�� p� and q� be four rational numbers�

p� hq�i � p� hq�i � p� 
 p� � hq�i 
 q� � hq�i

p� hq�i u p� hq�i � � � p� 
 p� � hgcd�q�� q��i

c � p� hq�i u p� hq�i � � � p� hq�i u p� hq�i  c hlcm�q�� q��i

p� hq�i t p� hq�i  p� hgcd�q�� q�� p� 
 p��i

The operations are extended to deal with the extremal elements	
Since the height of the lattice is very big� a widening operator is generally used in this

analysis� several di�erent ones are proposed in �Gra��a�	 They are all based on the idea of a
jump to Q in a possibly in�nite increasing chain of rational cosets	 The di�erent strategies
result from the predicates taken under consideration in order to do this jump to Q	 The
simplest predicate is that two consecutive cosets in the increasing chain have non zero distinct
modulos	
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�� Rational linear congruence analysis

When E is an element of fN�Z�Q�Rg� Et is the set of tuples of elements of E and En�p is
the set of matrices of elements of E with n rows and p columns	 The notation of M i�j as the
matrix corresponding to the columns of M of ranks greater than i and less than j is used in
the following� when i is � it will be omitted giving M j	 Mi denotes the column of rank i of
the matrix M 	 Mi possibly denotes a matrix too� the context indicates which semantics is
chosen	 The $	% operator is used to denote either the product of one scalar with a tuple� or
the scalar product of two tuples	 The vector named O denotes the null vector and the matrix
I�d� the identity matrix of dimension d� it is simply noted I if there is no ambiguity on d	
Following the same approach as in the preceding section� �rst a set of subgroups of Qn is

characterized� then the set of the corresponding cosets is exhibited	

Theorem � Definition � �Linear subgroup of Qn �Gra��a��� Let p and r be two non
negative integers and M � Qn�p�r a rational coe�cients matrix� A linear subgroup hMi�p�r�
of Qn is the set MpZp�Mp���p�rQr of the elements

k��M� � k��M� � � � �� kp�Mp � ���Mp�� � ���Mp�� � � � �� �r�Mp�r

where �ki�i����p	 �Zp and ��i�i����r	 � Qr� It is the sum of a �nitely generated subgroup MpZp

of Qn and of a subspace Mp���p�rQr of Qn�
If p � r  � then the convention is that the corresponding linear subgroup is the null vector
singleton�

A linear subgroup hMi�p�r� is possibly denoted using the collection of the columns of the

matrix M instead of the matrix itself� giving hM��M�� � � � �Mp�ri�p�r�	

Theorem � Definition �� �Linear cosets �Gra��a��� A linear coset A hMi�p�r� of Q
n

is a coset of Qn modulo a linear subgroup hMi�p�r� of Q
n� it has the form

A hMi�p�r�
def
 fA�MK�K �ZpQrg

where A � Qn is the representative� hMi�p�r� 	M � Qn�p�r
 the modulo� p � N the integer

rank and r � N the rational rank of the linear coset A hMi�p�r�� The complete lattice of linear
cosets of Qn is obtained by adding the empty set�

The lattice of linear cosets is now shown to exactly correspond to the set of solution sets of
rational linear congruence equation systems	 The process of getting a linear coset from such
an equation system is exposed� at least the part of the process that will be used in appendix D	
An example of a linear coset of Q� is given on the �gure II	�	 It is the solution of the linear

congruence equation x
 �y � � mod ��� corresponding to the linear coset

� �� � h
� �

 � i�����

First� a method for �nding the coset ofZn which is the solution of a linear congruence equation
in Zp is needed� the complete method is given in �Gra��a�� it is too long to be recalled here
although it is needed in the implementation of our analyses	 Then the resolution of a linear
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Figure II��� Rational linear congruence equation solution set	

congruence equation in ZpQr with r � � is given in propositions �� and ��	

Proposition �� �Linear equation in ZpQr �Gra��a��� Let �p�r be a non zero rational
number� The solution set of the linear equation

��x� � ��x� � � � �� �p�rxp�r  a

in the linear coset O hIi�p�r� with � � p � p� r 
 � is the linear coset

C  
a

�p�r
Ip�r

�
I� 


��

�p�r
Ip�r � � � � � Ip�r�� 


�p�r��

�p�r
Ip�r

�
�p�r���

The columns of the modulo of C are linearly independent�

Proposition �� �Linear congruence equation in ZpQr �Gra��a��� Let q and �p�� be
non zero rational numbers� The solution set of the linear congruence equation

��x� � ��x� � � � �� �p��xp�� � � � �� �p�rxp�r � a mod �q�

in the linear coset O hIi�p�r� with � � p � p� r 
 � is the linear coset

C  
a

�p��

Ip��

�
I� 


��

�p��

Ip��� � � � � Ip 

�p
�p��

Ip���
jqj

�p��

Ip���

Ip�� 

�p��

�p��

Ip��� � � � � Ip�r 

�p�r
�p��

Ip��

�
�p���r���

The columns of the modulo of C are linearly independent�

Then a method that reduces the resolution of a linear congruence equation in a linear coset
to the resolution of another linear congruence equation in a special kind of linear cosets of
the formZpQr is given �of which only a special case is explicated here because the other cases
are not used by our algorithm�	
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Proposition �� �Linear congruence equation in a coset of Zn �Gra��a��� The
solution of the linear congruence equation

��x� � ��x� � � � �� �nxn � a mod �q����

in the linear coset A hMi�p��� is the coset

�A �MB� hMNi�p����

where B hNi�p���� is the solution of the linear congruence equation

���� ��� � � � � �n�M

	
BBB


y�
y�
���
yp

�
CCCA � �a
 ���� ��� � � � � �n��A� mod �q����

in Zp� if the equation 	 �
 has a non empty solution set� Otherwise� the solution set of
equation 	 �
 is empty�

Finally� the solution of a linear congruence equation system in Qn is obtained iteratively�
solving �rst an equation in Qn and then each other equation in the linear coset resulting from
the preceding resolution	

Theorem �� �Linear coset representations equivalence �Gra��a��� The set of so�
lution sets in Qn of linear congruence equation systems coincides with the set of linear cosets
of Qn�

The operators on the lattice of linear cosets �least upper bound� greatest lower bound and
comparison� are not used in the following and hence not detailed here� only operators con�
cerning linear subgroups comparison are given	

Proposition �� �Linear subgroup comparison �Gra��a��� Let hMi�p�r� and hM �i�p��r��
be two linear subgroups of Qn�

hMi�p�r� � hM �i�p� �r�� �

�
MpZp � M �Zp�Qr�

Mp���p�rQr � M �p
����p��r�

Qr�

hM �i�p��r�� is said to divide hMi�p�r��

The greatest common divisor of two linear subgroups always exists	
For more details about congruence analysis� see the work of Granger in �Gra��� Gra���

Gra��b�	 We end this chapter with some examples illustrating both analyses we sketched
above	
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Suppose that the program
for i �� � to n do

���� z �� i � ��	
�i�


�
�� x �� x � z


���� y �� y � 
�z


���� od


is analyzed� using the lattice of linear cosets� with the initial abstract context

x � � mod �
�

��
� 
 y � � mod �

�

��
�

After �ve iterations� it is automatically discovered that at program points f��g� f��g and
f
�g the program variables satisfy


i � � mod ���
�x� y � � mod � �

���

Using the lattice of rational arithmetical congruences� it is automatically found that in the
program

x �� 
����


���� while condition do

�
�� x �� x � �����


���� od


����

the program variable x veri�es

x �
�

����
mod �

�

���
�
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SEMANTIC ANALYSIS OF RATIONAL INTERVAL CONGRUENCES
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CHAPTER III

DESIGN OF INTEGER AND RATIONAL MODELS

The analysis of interval congruences requires two di�erent domains� a �rst one of integer
properties for a matter of precision and a second one of rational properties for the e�ciency
of its basic algorithms	 Although the coset congruence domain is presented before the inter�
val congruence one� we see in Chapter IV that the integer coset congruences are naturally
deduced from the rational interval congruences	 The content of this chapter and the next one
corresponds to �Mas���	

�� Notations

The notations of Chapter II are used	 In addition� we have Q��
def
 Q � f
�g� Q��

def
 

Q � f��g� and Z��
def
 Z� f
�g� Z��

def
 Z� f��g where 
� and �� are considered

as limits on Q and Z	 The usual operators �sum� product�� � �� on Q and Zare canonically
extended to Q��� Q��� Z��� Z�� and d
�e  b
�c  
� and d��e  b��c  ��	
Following the context �
����� is Q���Q�� orZ���Z��	 The greatest common divisor
is always non negative	 The integer coset a hqi with integer representative a and modulo q is
the set fa�kq� k �Zg	 The rational coset a hqi corresponds to the set fa�kq� k �Zg where
�a� q� � Q�	 The relation l � u mod m� which is equivalent to u 
 l � hmi� is shortened
to l

m
 u	 An inverse of the integer � with respect to the integer m� when it exists� is noted

���
�m� and satis�es ��

�� � � hmi	 ���
�m� is noted �

�� when there is no ambiguity on the modulo	

An inverse of � with respect to m exists when gcd ���m�  �� it is a direct consequence of
Bezout�s theorem�	 For the rest of this chapter� the convention is that an inverse ���

�m� of an
o�set � is always taken with respect to the modulo m of their coset congruence� if there is no
possible ambiguity �see de�nition �� for the de�nitions of coset congruence and o�set�	

� Let a and b be two integers� there exist integers u and v such that

u�a� v�b � gcd 	a� b�

��
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�� The set CC of coset congruences on Z

Interval analysis of �CC��� and congruence analysis of �Gra��� Gra��b� are quite orthogonal
concepts	 This leads to the de�nition of a third analysis with the basic idea of generalizing
the �rst two to the notion of coset congruence	 The basic components of coset congruences
�and two degenerate cases of the general de�nition� are integer intervals and integer cosets	
To �ll the gap between these two kinds of elements� general coset congruences are introduced	
A coset congruence is a set of arithmetical cosets with the same modulo and whose repre�
sentatives are separated by an o�set such that the common modulo and the o�set are prime
numbers	

���� De�nition�

Definition �� �Coset congruence �� �l� u� hmi�� Let l � Z��� u � Z�� and m� � � Z
be integers such that gcd���m�  � andm  � implies �  �	 The coset congruence �� �l� u� hmi
of o�set �� lower bound l� upper bound u and modulo m is de�ned by

�� �l� u� hmi
def
 

���
��
�
�� u�� �l���� if l � u and m  �� ����
l���u

�� hmi otherwise� ���

CC is the set of coset congruences	

A very important remark for the rest of the discussion about coset congruences is that� when
the modulo is non zero� since the o�set and modulo are prime numbers by de�nition� the
single cosets �� hmi used in de�nition case ��� are all distinct for m consecutive values of �	
Hence taking a su�ciently wide interval �l� u� provides a way to represent Z�see lemma ��
for details�	
One motivation to de�ne such a surprising integer model is that a coset congruence is

exactly the intersection with Zof a much more intuitive model de�ned on the set of ratio�
nal numbers� the interval congruences that are de�ned in section �	 In particular� we will
see that the primality between the common modulo and the o�set separating the di�erent
representatives comes from that intersection	 Another� more practical� reason that leads us
to approximate CC with rational interval congruences is that the comparison �set inclusion�
test on CC is for the moment particularly ine�cient� 	
The coset congruences of o�set equal to one intuitively correspond to usual integer intervals

regularly dispersed following a pattern of length the value of the modulo	 The di�erent other
kinds of integer sets considered in the preceding de�nition are illustrated by the following
�gure�

�No e�cient 	constant time� algorithm has been found by me
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�� ��
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The general case ���� corresponding to �� ��� �� h�i� is the set of the three integer cosets � h�i�
�� h�i  � h�i and �� h�i  � h�i	 The case ���� where the modulo is zero and the representative
bounds well ordered� is noted �� ��� �� h�i and corresponds to the integer interval ��� ��	 The
case ���� where the modulo is zero and the representative bounds inverse ordered� corresponds
to de�nition case ��� and is noted �� ���� ��� h�i	 Finally� the case ��� represents the set of
integers greater than �� and is the coset congruence �� ������� h�i	 Following these four coset
congruence schemes� we see that the representation of Zusing such a model is possible in
the case ��� when there is enough distinct cosets� in cases ��� and ��� when the single integer
interval is �
����� and in the case ��� when the lower bound is the successor of the upper
bound	
The characterization of coset congruences equal to Zor to � is described by lemmas ��

and ��	

Lemma �� �Coset congruence equal to Z�� Let �� m and c be three integers� l �
Z�� and u �Z��� then

� 
 jmj � u 
 l � � � Z 

��
�
�� �c� c
 �� h�i
�� �
����� h�i
�� �l� u� hmi

Proof� Clearly the case ��� of coset congruence de�nition leads toZif and only if u  l
�	
Two subcases based on the nullity of its modulo must be considered for the case ���	
First if the modulo is zero
 then the o�set is one by de�nition and the corresponding coset
congruence is Zif and only if u  
l  ��	
Otherwise the modulo is non zero and then the corresponding coset congruence is Zif and
only if the number of its constituent distinct integer cosets is greater than the absolute value
of its modulo	 Notice that since gcd���m�  �� for m consecutive values of i� all the cosets
i� hmi are distinct and the result follows	

Lemma �� �Coset congruence equal to ��� Let � and m be integers� l � Z�� and
u �Z��� then

m � �
 u 
 l � �� �l� u� hmi  �


This case exactly corresponds to the usual integer
 possibly in�nite
 intervals
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Proof� The �rst case ��� of the coset congruence de�nition never provides the empty set	
The latter case ��� leads to the same conclusion when m  � but when m � � the empty set
is obtained for u 
 l	

Remark that the nullity of the modulo implies that the o�set is one in the de�nition of coset
congruences	

���� Equivalence Relation� For the relation � induced by the set inclusion relation�
CC is a preorder	 An equivalence relation �  � 
 � is de�ned to build a partial order on
the quotient set CC
� �for example �� ��� �� h
��i � �� ��� �� h��i�	
A characterization of coset congruence equivalence is now given	 This algorithm determines

if two coset congruences represent the same integer set and is used to implement the relation
�� it is proven correct in appendix A	

Theorem �� �Coset congruence equivalence ��� Let C�  ��� �l�� u�� hm�i and C�  
��� �l�� u�� hm�i be two coset congruences� C� � C� if and only if

� 
 jm�j � u� 
 l� � �
�
u�  l� 
 � 
 m�  �

�
u�  
l�  ��
m�  �

������
�����




������
�����

� 
 jm�j � u� 
 l� � �
�
u�  l� 
 � 
 m�  �

�
u�  
l�  ��
m�  �

����

�
m� � � 
 u� 
 l� 
 m� � � 
 u� 
 l� ����

�

jm�j  jm�j 
 u� 
 l�  u� 
 l� 


��������������������������
�������������������������

�
w  � �m  �

��l�
m
 ��l�

��
w  m
 �

��l� 
 ��l�
m
 �� 
 ��

����
��
� � w � m
 �

��
m
 
��

��l�
m
 ��u�

����
��
� � w � m
 �

��
m
 ��

��l�
m
 ��l�

����

where m  jm�j and w  u� 
 l� � ��

These three cases respectively correspond to C� � C�  Z� C� � C�  � and to the general
case	 The redundancies �guring in the above formula are not eliminated for a matter of
formulation simplicity	
The quotient set CC
� is abusively called the set of coset congruences	
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���� Normalization� If we arbitrary choose a representation of the empty set ��� ��� �� h�i�
and of the set of integers ��� ��� �� h�i� by a coset congruence� if we remark that apart from
them� coset congruences of zero modulo are equivalence classes with only one element� and
�nally if we consider the coset congruences with positive modulo� o�set and lower bound
positive and smaller than the modulo �recall that for example �� ��� ��h
��i � �� ��� �� h��i��
we obtain the following normalization algorithm	

Corollary �� �Coset congruence normalization k k�� Let I  �� �l� u� hmi be a co�
set congruence� kIk is de�ned by

if Z� I then �� ��� �� h�i
else if I � � then �� ��� �� h�i
else if m  � then �� �l� u� h�i
else if u  l then ���� �l�� u�� hmi�
else if u
 l  m
 � then ���� �l� 
 � � �� l�
 � �m
 �� hmi�
else if jmj div � 
 ��� mod jmj 
 jmj then ��
�� �
u�
l� hmi�
else ���� �l� u� hmi�

where ���� �l� u� hmi�  �� mod jmj�� �l mod jmj� u
 �l div jmj�jmj�hjmji is compatible with
the equivalence relation � and is a normalization operator on CC
��

Proof� The equivalence between C � CC and kCk comes from theorem �� and the
normalization character ��C�� C� � CC C� � C� � kC�k  kC�k� is provided by theorem ��
too� �successively considering all the cases where two coset congruences are equivalent and
choosing one representation�	

The normalization of elements representing Zand � is provided in order to simplify the
expressions in the rest of the work� there is no canonical representation for these elements� for
example �� ��� �� h�i could represent Zas well	 The choice between the o�set and its opposite
comes from the consideration of the abstraction function� see section IV	�	�	 Since most of
the operators that are de�ned on CC
� are not compatible

� with the equivalence relation
�� we cannot denote an equivalence class by one of its representatives and have to use the
normalization operator on CC
� de�ned in corollary ��	
Note that this normalization algorithm could have been used as a concretization application

from CC into P�Z� since it gives the unique subset of Zrepresented by the original coset
congruence	 It is not the case because the concretization giving the meaning of an interval
congruence is used instead �see the construction of the abstract interpretation in Chapter IV�	

�The unicity of the choice between an o�set and its opposite is a consequence of the following
equivalence for � and �� prime with m

� � ��
m
� �� ��� � ��

�� m
� �

ensuring that our normalization algorithm is idempotent�
�Operator o is compatible with relation � if and only if �C�� C�� C

�
�� C

�
� � CC 	C�oC�� � 	C� �

C�
�� � 	C� � C�

��� 	C�
�oC

�
��
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The next lemma is used to de�ne the concretization function in the relational analysis in
section VI	�	�	

Lemma �� �Intersection with an arithmetical coset�� Let �� �l� u� hmi � CC
� be
a normalized coset congruence such that m � � or l � u� and g a non negative divisor of its
modulo m�

�� �l� u�hmi � hgi  

��
��� ��� �� h�i if

l
l

g

m
�

j
u

g

k
g �

�
��

hl
l
g

m
�
j
u
g

ki D
m
g

E�
otherwise

Proof�

�� �l� u� hmi � hgi  

	

 �

l���u

�� hmi

�
A � hgi

 
�

l���u

���� hmi� � hgi�

since gcd �g� ��  �

 
�

gd l
ge���gb u

g c � �
g
��

�� hmi

 
�

d l
ge����bu

gc

��g� hmi

factorizing g in the cosets

 g �

	
B
 �
d l
ge����b u

gc

���

�
m

g

��
CA

which is decomposed according to its emptyness and provides the result	

���� Complementation operator� Let us de�ne two auxiliary functions giving respec�
tively the successor of a possibly positive in�nite integer and the predecessor of a possibly
negative in�nite integer	 Their de�nitions result from the simpli�cation of the complementary
operator de�nition	

� � Z�� � Z��

n ��

�

� if n  ��

n � � otherwise

� � Z�� � Z��

n ��

�
�� if n  
�

n
 � otherwise
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Now the complementary operator which provides the negation of a coset congruence property
is de�ned	

Theorem � Definition �� �Complementation �� Let C  �� �l� u� hmi be a normal�
ized coset congruence� Its complementary in Zis

C  �� ���u�� ��l�m�� hmi

and veri�es


C � C  �

C � C  Z

Proof� The reader can easily establish the correctness of the complementation formula in
the case where the modulo is zero or the lower bound greater than the upper one	
Now if the modulo is not zero and l � u� there are exactly m distinct cosets of modulo m
and they are reached if we consider the m cosets of representatives �l� ��l� ��� � � � � �u� ��u�
��� � � � � ��l � m 
 �� since � and m are prime	 Hence the coset congruences of constitutive
representatives �l� ��l� ��� � � � � �u and ��u� ��� � � � � ��l�m
 �� are complementary of each
other
	

For example� �� ��� �� h�i  �� ��� �� h�i
�� ��

r r r r r rr r r r r r rr r r r r r r

�� ��
r r r r r r rr r r r r r rr r r r r rr r r r r r rr r r r r rr r r r r r r

and

�� ��� �� h�i  �� ���� ��h�i

�� ��� �� h�i  �� ���� ���h�i � �� ��� �� h�i

Z �� ��� �� h�i  �� ��� �� h�i  �

�� ������ h�i  �� �
�� �� h�i

Only few analyses like parity� sign or logic program groundness analysis �CC��a� provide such
a complementation characteristic and it will be shown to be very useful in the section IV	� on
abstract primitives	 Although such a property necessitates the consideration of complement
of �nite integer intervals and hence complicates the expressions concerning coset congruences�
such a characteristic feature is kept for analysis accuracy motives	
The use of normalized coset congruences leads to simpler expressions than if we had to

generalize the complementation operator to CC	 The complementary of a coset congruence
corresponds to the set of integer cosets not contained in the original one� hence only the
representative has to be inverted� the resulting expression is not always normalized �see the

examples below� although the property �C � CC
� C � C holds	


Recall that for a normalized coset congruence
 the di�erence between its greater and lower bounds
is less than its modulo�
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���� Set inclusion induced order� Comparison on CC is not provided for the general
case because no constant time algorithm had been found by us� instead� only a special case
where one operand is an arithmetical coset is dealt with	

Proposition �� �Partial�order on coset congruences�� Let C�  �� �l�� l�� hm�i
and C�  ��� �l�� u�� hm�i be two normalized coset congruences non empty and non equal
to Zsuch that m�m� � �� C� � C� if and only if�

u� 
 ���
� l�

gcd �m�� m��

�
 

�
l� 
 ���

� l�
gcd �m�� m��

�
�

m�

gcd �m�� m��

 �����

Proof� Let d  gcd �m�� m�� and q�  
m�

d
	

From the proof of lemma �� we know that C� � C� is equivalent to

l� hdi � C�

which is the same as

�l� � d� hm�i � �l� � �d� hm�i � � � � � �l� � q�d� hm�i � C�

and multiplying all its representatives and the ones of C� by �
��
� �such that ���

��
�

m� ��� we
get the equivalent inclusion�

���
� �l� � d� hm�i � ���

� �l� � �d� hm�i � � � � � ���
� �l� � q�d� hm�i � �� �l�� u�� hm�i

By identifying identical integer cosets� there is a one to one mapping from the integer coset set
fd hm�i � � � � � q�d hm�ig onto f���

� d hm�i � � � � � �
��
� q�d hm�ig� indeed� since gcd ��

��
� � m��  ��

these two coset sets are equal to the set of all cosets of modulo m� and of representative a
multiple of d	 Hence permuting the left hand side representatives we get

����
� l� � d� hm�i � ����

� l� � �d� hm�i � � � � � ����
� l� � q�d� hm�i � �� �l�� u�� hm�i

which is equivalent to

���
� l� hdi � �� �l�� u�� hm�i

Then the problem amounts to characterizing that q� consecutive representatives of the integer
coset ���

� l� hdi are in the interval �l�� u��	 This is equivalent to the existence of an integer i
such that 


���
� l� � �i
 ��d 
 l� � ���

� l� � id
���
� l� � �i� q� 
 ��d � u� 
 ���

� l� � �i� q��d

that is equivalent to ���
��

i
 � 

l��	

��
� l�

d
� i

i �
u��	

��
� l�

d

 q� � � 
 i� �
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and �nally �
u� 
 ���

� l�
d

�
 

�
l� 
 ���

� l�
d

�
� q� 
 �

Special inclusion cases where coset congruences are empty� equal to Zor of zero modulo are
very easy to deal with	 Hence the present proposition provides a characterization of the coset
congruence inclusion in the particular case where the smallest one is a simple coset	 Since
I have not been able to establish a simple property concerning general coset congruences
inclusion� a new distinct order is introduced to model the precision on the coset congruences
set	 It is the goal of the next section	 Of course� the naive algorithm consisting of using
u 
 l times �when it is �nite� the other cases take constant time to deal with� the preceding
algorithm to test the inclusion of �� �l� u� hmi in an other coset congruence is possible but very
expensive �except if in practice the lower and upper bounds are very close�	

���� Precision concrete order� Because we are not able to e�ciently compare coset con�
gruences and� moreover� for the purpose of the approximate join operator �in section IV	�	���
we need to choose between non comparable ones� a measure of accuracy � is de�ned	 It par�
tially orders CC using an approximation of the cardinal of the integer set where this size is
close to the probability that an integer is in the coset congruence	 This is an arbitrary order
de�ned on CC
�� it is used by the approximate join operator to make an arbitrary choice be�
tween two rational interval congruences based on the ratio of information �their corresponding
coset congruence� they are associated to	 Note� however� that this process ensures that the
approximate join of two integer intervals is the least upper bound in the lattice of intervals
and that the approximate join of two integer cosets is the least upper bound in the lattice of
cosets	

Definition �� �Accuracy ��� The accuracy function � associates with each coset con�
gruence a rational number in the following way�

� � CC
� � Q

�� �l� u�hmi ��

�����������
����������

� if �� �l� u� hmi  �

�u�l�
u�l��

if m  � and 
� 
 l � u 
 ��
�
�

if m  � and �l  
� or u  ���
u�l��
m

if m � �

� � �
l�u

if m  � and u 
 l

� if �� �l� u� hmi  Z

Intuitively� � arranges the coset congruences in the following informative order�

��� the empty set�
��� the half lines �without any ordering� in the middle of the sets of cosets with non zero

modulo $density% �ratio between the number of representatives and modulo� order�
��� the complementary of �nite sets in their complementary size reverse order�
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��� the set of all integers	

and the �nite sets in size order	 An example of ascending chain for that partial order is
graphically given by�

�� ��

�� ��
r r r r r r r r

�� ��
r r r r r r r r r r r r r r r r r r

�� ��
r r r r r r r rr r r r r r rr r r r r r r r

�� ��
r r r r r r r r r r r r r r r r r r r r r r r r r r

�� ��
r r r r r r rr r r r r r rr r r r r rr r r r r r rr r r r r rr r r r r r r

�� ��
r r r r r r r r r r r r r r r r r r r r r r rrrrrrrrrrrrrrrrrrrrrrrrrrr

�� ��
r r r r r r r r r r r r r r r r r r r r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

�� ��
r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

and corresponds to

���� ��� �� h�i� � ���� �
�� �� h�i� � ���� �
��� �� h�i� � ���� ��� �� h�i� � ���� ������ h�i� �

���� ��� �� h�i� � ���� ���
�� h�i� � ���� ��� �� h�i� � ���� ��� �� h�i�

The determination of an accuracy function is not unique and has been chosen to be simple	
� could have been given without using a numerical function �for example by giving directly
the comparison algorithm�	
The set CC
� of coset congruences described above has only few interesting algebraic prop�

erties� it is a complete partial order with an in�mum and a supremum	 Its major drawback
is a lack of least upper bound and of an e�cient comparison algorithm between its elements	
In addition CC
� is not a Moore family �see de�nition �� and cannot be completed by inter�
secting its elements �because of the size of the resulting set�	 These are good motivations to
introduce a new approximation� the rational sets of IC� which provide e�cient algorithms	
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�� The set IC of interval congruences on Q

The goal of this section is to de�ne a rational model based on the use of a set of rational
arithmetical cosets with consecutive representatives	

���� Two equivalent de�nitions�

Definition �� �Interval congruence �a� b� hqi�� Let a � Q��� b � Q�� and q � Q be
rational numbers	 The interval congruence �a� b� hqi of lower bound a� upper bound b� and
modulo q is de�ned by

�a� b� hqi
def
 

�
�a����� �
�� b� if a � b and q  � ����

fx� �x� � Q� x  x� � kq� a � x� � b� k �Zg otherwise ����

IC is the set of interval congruences	

In the following� when we need to consider an interval congruence �a� b�
�


�

�
� we implicitly take

non negative integers � and � such that gcd ��� ��  �	
Dually� let us de�ne a set of appropriate congruence equations	

Definition �� �ARCEBR�� Let a � Q��� b � Q�� and q � Q	 The arithmetical rational
congruence equation with bounded representative

x � �a� b� hqi

is de�ned by the system with the rational unknown x

x � �a� b� hqi
def
 

�������
������

�
�	a���b

x  � if a � b and q  � ����

�
a���b

x � � mod �q� otherwise ����

Let us note ARCEBR the set of such equations	

Clearly� IC corresponds to the solution sets of the elements of ARCEBR	 For example the
interval congruence ��� �� h�i corresponds to the solution of the equation x � ��� ��h�i	

Theorem �� �Representation equivalence�� The set IC of interval congruences on
Q is the set of the solution sets of the elements of ARCEBR�

Proof� The natural map from ARCEBR to IC

� � ARCEBR � IC
x � �a� b� hqi �� �a� b� hqi

provides an isomorphism between the solution sets of equations ���� and ���� and expres�
sions ���� and ���� respectively	
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An interval congruence is either an in�nitely and regularly dispersed set of rational intervals�
or equivalently a set of rational cosets with $consecutive% representatives� therefore �a� b�
is called the representative of the interval congruence	 For any non negative rational q�
IC�q� is the set of interval congruences of modulo q	 Two interval congruences with di�erent
representatives may denote the same rational set	

Notice that the set of interval congruences contains the set of rational cosets �where the
lower and upper bounds are equal� and the set of rational intervals �where the modulo is zero
and the upper bound greater than the lower bound�	

An example of such a rational set is given below��
�

�
�
�

�

� �
�

�

�
 

�
k�Z

�
� � �k

�
�
� � ��k

�

�

and illustrated by

��� �

�

�

�

�

�

�
�

�

��

�

�
��

�

��

�

In the following� we implicitly consider the usual operators on interval congruences of zero
modulo �usual rational intervals� that are the sum� the di�erence of two intervals and the
product of an interval with a scalar	

The two following lemmas are quite simple to verify	

Lemma �� �Interval congruence equal to Q�� Let I  �a� b� hqi be an interval con�
gruence�

I  Q �

��
�

q  � 
 a  
b  
�
�

q � � 
 b
 a � jqj

Lemma �� �Interval congruence equal to ��� Let I  �a� b� hqi be an interval con�
gruence�

I  � �



q � �
b 
 a

The de�nition of complementation on interval congruences does not �t with the usual meaning
of a complementation operator because the intersection of an element with its complementary
is not empty	 The notion is only used to compare interval congruences	

Definition �� �Complementation on IC�� Let I�  �a�� b�� hqi be an interval congru�
ence	 The interval congruence I�  �a�� b�� hqi is called its complementary i�

I� � I�  Q

and I� � I� is the join of at most two rational cosets of modulo q	
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For example� the complementary of
�
�


� �

 
h��i is

�

��� �




 
h��i �their intersection is �



h��i �

� h��i� and the one of
�

�� �

�


 
h�i is

�
�
�

���

 
h�i �their intersection is �

�

h�i�	

���� Comparison on IC� In contrast to CC� an e�cient comparison algorithm is pro�
vided here	 Let us �rst rede�ne the order relation	

Definition �� �Interval congruence comparison ���� The comparison relation ��

on IC is the extension to IC of the partial order relation on P�Q� induced by set inclusion	

�� is a preorder relation	 The following theorem reduces the general comparison to the
particular case where the �rst of the compared elements is of zero modulo� the next theorem
deals with this special case	 In addition to the lemma characterizing interval congruences
equal to Q or to �� they provide an algorithm to compare interval congruences which is
implicitly given here	

Theorem �� �Comparison with non zero first modulo�� Given q� � � and two in�
terval congruences I�  �a�� b�� hq�i and I�  �a�� b�� hq�i neither empty nor equal to Q� I� �� I�
if and only if���
��

q�  � 
 b� 
 a� 
 �b�� a�� h�i �� �b�� a� � q�� hq�i ����
�

q� � � 

l

a��a�
gcd �q��q��

m
 

j
b��b��jq�j
gcd �q��q��

k
� � ����

Proof� Some points of the following proof� which are very close to the one of the proof of
proposition ��� are not fully explicated	
If the modulo of the second interval congruence is zero �case ������ I� is in�nite and its
complementary must be in the complementary of I�	
Otherwise� the modulo of the second interval congruence is not zero �case �����	

Let d  gcd �q�� q�� and q
�
�  

jq�j
d
	

For all a in the rational interval �a�� b��� the smallest set of rational cosets of modulo q�
containing the interval congruence �a� a� hq�i is

f�a� d� hq�i � �a� �d� hq�i � � � � � �a� q��d� hq�ig

Hence �a� a� hq�i �� I� is equivalent to

�a� a� hdi  
�
i�Z

�a� id� hq�i � I�

We follow now a reasoning similar to the end of the proof of the proposition �� considering
rational instead of integers	
It is equivalent to say that q�� consecutive representatives of �a� a� hdi are in �a�� b�� �recall that
q��d  jq�j� i� there exists an integer i such that

a� � a � id

a� id� q��d
 d � b�
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and since this system is valid for any rational a in the interval �a�� b�� we get

a� � a� � id

b� � id� jq�j 
 d � b�

which implies

!
a� 
 a�

d

"
 

#
b� 
 b� 
 jq�j

d
� �

$

Examples

Following the rule ����
�
�
�
� 

�

 �
�
�

�
is less than ��� �� h�i as it is pictured by

��� �

�

�

�

�

�

�
�

�

��

�

�
��

�
� �

�

�
�

�
�

where the big braces correspond to the interval congruence with zero modulo and the small
ones represent the other	 When following rule �����

�
�
� �



�

 �
�
�

�
is less than

�
�
� �



�

 �
�



�
��� �

�

�

�

�

�

�
�

�

��

�

�
��

�

��

�

��� �
�

�

�
�

�

�
��

��

�
��

��

�
��

��

�
��

��

�
��

�

�
��

�

�
��

��

�
��

��

�
���

��

�
���

��

�
��

�

�
��

�

The following theorem assumes that the comparison of two intervals� both with zero modulo�
is well known	

Theorem �� �Comparison with null first modulo�� Given two interval congruences
I�  �a�� b�� h�i and I�  �a�� b�� hq�i neither empty nor equal to Q� I� �� I� if and only if���
��

q�  � 
 I� �� I� ����
�

q� � � 
 
� 
 a� � b� 
 �� 

l
a��a�
jq�j

m
 

j
b��b�
jq�j

k
����

Proof� The comparison of two interval congruences of zero modulo �case ����� being quite
trivial is not detailed here	
If the greatest interval congruence is of non zero modulo �case ������ then I� is �nite �because
I� is not equal to Q� and in one representative of I�� which results in the existence of an
integer i such that

a� � ijq�j � a�

b� � b� � ijq�j

and the result follows	
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Example

Following the rule ����
�
�


� �



 
h�i is less than

�
�
�
� 

�

 �
�



�
��� �

�

�

�

�

�

��� �
�

�

�
�

�

�
��

��

�
��

��

�
��

��

�
��

��

�
��

�

�
��

�

�
��

��

�
��

��

�
���

��

�
���

��

�
��

�

�
��

�

�
���

��

�
���

��

���� Equivalence relation� An algorithm for deciding the equivalence of interval con�
gruences is provided	 It does not rely upon the comparison algorithm	 Notice the di�erence
of complexity with respect to the equivalence algorithm on CC of theorem ��	

Theorem � Definition �� �Equivalence ���� The interval congruences I� �a�� b�� hq�i
and I�  �a�� b�� hq�i represent the same rational set 	I� �� I� 
 I� �� I�
� noted I� �� I�� if
and only if they are either both empty 	qi � �� bi 
 ai for i � f�� �g
 or the set of rational
numbers 	�qi  � 
 bi  
ai  ��� � �qi � � 
 bi 
 ai � jqij� for i � f�� �g
 or have modulos
with the same absolute value jq�j and satisfy b� 
 b�  a� 
 a� � hjq�ji� �� is an equivalence
relation on IC�

Proof� Only the case where both interval congruences are neither empty nor equal to
Q has to be explicated	 It is easy to see that� in the other cases� an interval congruence
with zero modulo and one with non zero modulo cannot be equivalent and that the theorem
characterizes the equivalence between zero modulo interval congruences	

Now� suppose we have two non empty� non equal to Q interval congruences with non zero
modulo	 They are equivalent if the case ���� of theorem �� is veri�ed for both I� �� I� and
I� �� I� which gives�

!
a� 
 a�

d

"
 

#
b� 
 b� 
 jq�j

d

$
� � 


!
a� 
 a�

d

"
 

#
b� 
 b� 
 jq�j

d

$
� �

where d  gcd �q�� q��	 Suppose d does not divide a� 
 a� then�

!
a� 
 a�

d

"
 


!
a� 
 a�

d

"
� �

hence

#
b� 
 b� 
 jq�j

d

$
� �  


#
b� 
 b� 
 jq�j

d

$

�A non integer rational number a veri�es dae � 	d	ae � ��
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and there exists an integer i such that

i �
b� 
 b� 
 jq�j

d
� � 
i� �


i �
b� 
 b� 
 jq�j

d


 i� �

and

i
 � � q�� �
b� 
 b�

d

i� q��

i
 �
 q�� 

b� 
 b�

d
�i
 q��

where jq�j  dq�� and jq�j  dq��	 The existence of
b��b�
d

implies �following footnote � on
page ���


�
 q�� 
 q��


� � q�� � 
q��

The latter inequality implies that the sum of the positive integers q�� and q�� is less than one
which is impossible	 Hence d divides a� 
 a� and we have#

b� 
 b� 
 jq�j

d

$
� �  


#
b� 
 b� 
 jq�j

d

$

 �

and� following the same scheme as above� it is established that there exists an integer i such
that ��

�
i
 � � q�� � b��b�

d

 i� q��

i
 q�� 
 b��b�
d

� i� �
 q��

����

and


q�� 
 q��


� � q�� � �
 q��

Hence q��  q��  � and jq�j  jq�j  d	 The substitution of � to q�� and to q
�
� in the system ����

provides

b� 
 b�
d

 i

hence d divides b� 
 b� too	 The proof of the equality of the distances separating upper and
lower bounds is trivial	
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The preceding theorem states that �IC���� is a preorder and we use the equivalence classes on
IC induced by �� for the next steps of the construction of our abstraction	 Hence from now
on and to avoid notational complications� we note an equivalence class of IC
��

by one of its
representative and the partial order on IC
��

by ��	 There is no need here for a normalization
operator as in CC because operators on IC are compatible with the equivalence relation	
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APPENDIX A

Equivalence relation on CC

Before stating that coset congruences with distinct modulos are distinct� two lemmas con�
cerning the conversion of coset congruences to a new modulo are established	 Let us �rst show
that given a coset congruence of non zero modulo� non empty and non equal toZ� the smallest
�for set inclusion induced order� coset congruence� with a �xed new modulo� containing it�
is equal to Z� if the number of consecutive integer cosets of the initial coset congruence is
greater than the gcd of the two modulos	

Lemma �� �Coset congruence conversion giving Z�� Let C�  ��� �l�� u�� hm�i and
C�  ��� �l�� u�� hm�i be two coset congruences�

� 
 u� 
 l� � � 
 jm�j
u� 
 l� � � � gcd �m�� m��

C� � C�

��
� � C�  Z

Proof� Let us recall that C� is non empty and non equal toZand has a non zero modulo	
We are going to show that the smallest coset congruence of modulo m� containing C� is Z	
First ��l� hm�i � ���l� � �� hm�i � � � � � ��u� hm�i � C� hence

��l� hm�i � ���l� � �� hm�i � � � � � ��u� hm�i � C�

Since C� is of modulo m� and by proposition � hm�i t hm�i  hgcd �m�� m��i� then

��l� hgcd �m�� m��i � ���l� � �� hgcd �m�� m��i � � � � � ��u� hgcd �m�� m��i � C�

gcd ���� gcd �m�� m���  � implies that the left hand side of the latter inclusion is the coset
congruence ��� �l�� u�� hgcd �m�� m��i and lemma ��� under the hypothesis u� 
 l� � � �
gcd �m�� m��� shows that it is Z	

Now� if we negate the condition comparing the number of distinct cosets constituting the
original coset congruence with the gcd of modulos� a lower bound on the number of distinct
cosets constituting the resulting coset congruence is determined	

��
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Lemma �� �Representative width of converted coset congruence�� Let C�  
��� �l�� u�� hm�i and C�  ��� �l�� u�� hm�i be two coset congruences�

� 
 u� 
 l� � � 
 jm�j
u� 
 l� � � 
 gcd �m�� m��

C� � C�

��
� � u� 
 l� � � �

jm�j

gcd �m�� m��
�u� 
 l� � ��

Proof� Let d  gcd �m�� m�� and q  
jm�j
d
	 From the proof of lemma �� we have

��� �l�� u�� hdi � C�

Since ��� �l�� u�� hdi is the join of u� 
 l�� � distinct integer cosets of modulo d� each of which
satis�es �for the corresponding integer r�

��� �r� r�hdi  ��r hm�i � ���r � d� hm�i � ���r � �d� hm�i

� � � � � ���r � �q 
 ��d� hm�i

where the q single integer cosets are distinct� then ��� �l�� u�� hdi is the join of q�u� 
 l� � ��
distinct cosets of modulo m�� hence q�u� 
 l� � �� � u� 
 l� � �	

Lemma �� �Coset congruences of distinct modulo are distinct�� Let C�  
��� �l�� u�� hm�i and C�  ��� �l�� u�� hm�i be two coset congruences

� 
 u� 
 l� � � 
 jm�j
� 
 u� 
 l� � � 
 jm�j

jm�j � jm�j

��
� � C� �� C�

Proof� Let q�  
jm�j

gcd �m��m��
and q�  

jm�j
gcd �m��m��

	

If u� 
 l�� � � gcd �m�� m�� lemma �� shows that the only way for C� to contain C� is to be
Zwhich is impossible by hypothesis	
If u� 
 l� � � 
 gcd �m�� m�� lemma �� implies that u� 
 l� � � � q��u� 
 l� � �� and that
u� 
 l� � � � q��u� 
 l� � �� leading to u� 
 l� � � � q�q��u� 
 l� � �� and q�  q�  � and
�nally jm�j  jm�j which is incompatible with the hypotheses	

The preceding lemma is extensible to coset congruences with zero modulos but which are non
empty and non equal to Z�	 The following lemma characterizes equivalence between coset
congruences of identical modulo when one of them has its o�set equal to one�	

�It states that two coset congruences non empty and non equal to Zof distinct modulo absolute
value are distinct�

�These coset congruences intuitively correspond to usual integer intervals regularly dispersed fol�
lowing a pattern of length the value of the modulo�
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Lemma �� �Equivalence to a coset congruence of offset one�� Let m be a pos�
itive integer� l� � and n three integers such that gcd ���m�  � and � � n� � � jmj 
 ��

�� �l� l� n� hmi � �� ��� n� hmi �

��
�

� � � hmi 
 l � hmi
�

� � 
� hmi 
 l � 
n hmi
����

Proof� If � � � hmi  hmi then gcd ���m�  � implies jmj  � which contradicts the
hypothesis jmj � �	
If � � 
� hmi� we are going to build a one to one correspondence between the n distinct cosets
constituting �� �l� l� n� hmi and �� ��� n� hmi by identifying the identical cosets	 Recall that
�

m
 
�� so the cosets of �� �l� l� n� hmi are


l hmi � �
l
 �� hmi � � � � � �
l
 n� hmi

and in reverse order

�
l 
 n� hmi � �
l
 n� �� hmi � � � � �
l hmi

The cosets of �� ��� n� hmi are

� hmi � � hmi � � � � � n hmi

and the only way to build the correspondence between identical cosets is to associate �
l 

n � i� hmi to i hmi for � � i � n	 Indeed� if the correspondence associates �
l 
 n � i� hmi
to i� hmi �with i� 
 i �� hmi�� it should associate �
l
 n� i� k� hmi to �i� � k� hmi for n� �
consecutive integer values of k which is impossible because it would associate some coset of
one set to some coset that does not appear in the other set	 In particular� for i  �� the
correspondence requires �
l
 n� hmi  � hmi and l � 
n hmi that provides the result	
Now we can suppose that � �� �� �
�� �� hmi	 It is su�cient to show that � �� �� ��� jmj 
 �� hmi
and hence the only solution is � � � hmi and clearly l � hmi	
Suppose that � � �� ��� jmj 
 �� hmi �where jmj � ��	 Since n � � � jmj 
 �� the coset
congruence �� �n� �
 �� jmj 
 �
 �� hmi is non empty	 For every value of �� there exists an
integer k such that n��
 � � n
 ��km and jmj
 �
 � � km �just applying the de�nition
of coset congruences to � � �� ��� jmj 
 �� hmi�	 For that k� we have
 �km� n
 � � km� � �n�
�
 �� jmj 
 �
 �� � � hence

M  �� ��� n
 �� hmi � �� �n� �
 �� jmj 
 �
 �� hmi � �

Let � � M � hence � � �� ��� n
 �� hmi � �� ��� n� hmi	 The hypothesis implies that there exist
� � �l� l � n� and k � Zsuch that �  �� � km	 On the other hand � � � � �� ��� n� hmi�
similarly there exist �� � �l� l � n� and k� � Z such that � � �  ��� � k�m	 We have
�� � km � �  ��� � k�m	 Suppose � 
 �� � hmi� then �  ��� 
 ��� � �k� 
 k�m � hmi
which is impossible for jmj � �� hence � hmi � �� hmi	 Hence at least one of the cosets
� hmi and �� hmi is di�erent from �l � n� hmi� �rst� suppose � � l � n	 Then we have
�� � �� hmi  ��� � �� hmi because �  �� � km and ��� � �� hmi � �� ��� n� hmi because


Recall that �a� b�
 �c� d� �� � � c 
 b � d � a
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of � � �l� l � n 
 �� and of the left hand�side of ��	 �� � �� hmi � �� ��� n� hmi contradicts
the choice of � � � in �� �n� �� jmj 
 �� hmi in the de�nition of M 	 In second place suppose
�� � l � n	 Then we have �� � � � �� hmi  ���� � �� hmi because � � �  ��� � km and
���� � �� hmi � �� ��� n� hmi because of �� � �l� l � n 
 �� and of the left hand�side of ��	
�� � � � �� hmi � �� ��� n� hmi contradicts the choice of � � � � � in �� �n � �� jmj 
 �� hmi in
the de�nition of M 	 The result follows	

The general case for testing the equivalence of coset congruences of identical modulo is now
provided	

Theorem �� �Equivalence of coset congruences with identical modulo�� Let
C�  ��� �l�� u�� hm�i and C�  ��� �l�� u�� hm�i be two coset congruences such that

m  jm�j  jm�j � �

� � w  u� 
 l� � �  u� 
 l� � � � m
 �

C� � C� if and only if

�
w  �

��l�
m
 ��l�

� ���
��
� � w � m
 �

��
m
 ��

��l�
m
 ��l�

� ���
��
� � w � m
 �

��
m
 
��

��l�
m
 ��u�

� �
w  m
 �

���l� 
 ��
m
 ���l� 
 ��

����

Proof� The considered cosets are neither empty nor equal to Z	
If w  �� we have to compare integer cosets which results in comparing their representatives
��l� and ��l�	
If � � w � m
 �� we are going to show that C� � C� is equivalent to

���
� ���

�
l� 
 ���

� ��l�� u� 
 ���
� ��l�

 
hmi � �� ��� u� 
 l�� hmi����

by showing that the equality of the two cosets ���� hmi and ���� hmi respectively in C� and
in C� is equivalent to the equality of the two cosets �

��
� �����
 ���

� ��l�� hmi and ���
 l�� hmi�
where ���

� and ���
� are chosen such that ���

��
�

m
 � and ���

��
�

m
 �	

The relation

���� 
 ���� � hmi
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is equivalent to

�����
��
� 
 �����

��
� � hmi

since gcd ���� m�  �� which is in turn equivalent to

�����
��
� 
 �� � l� 
 l�

�
���

��
�

�% &z '
m
��

�
���

��
�

�% &z '
m
��

� hmi

and �nally

���
� ����� 
 ���

� ��l�� hmi  ��� 
 l�� hmi

which provides equality ����	 Since gcd ����
� ��� m�  � and � � u�
 l��� � m
 �� lemma ��

provides the result	
If w  m
 � the problem results in comparing the complementaries of C� and C� �which are
simple cosets� that are respectively ���l� 
 �� hmi and ���l� 
 �� hmi	

Proof� �of theorem ��� Notice that Lemma �� �resp	 lemma ��� provides the result when
the considered integer set is Z�resp	 �� and corresponds to case ���� �resp	 case �����	
Suppose that C� and C� are neither empty nor equal to Z	
First lemma �� implies that jm�j  jm�j even if m�  �	 In addition� two coset congruences
non empty and non equal to Zwith the same absolute value of modulo are equal if and only
if the di�erences between their upper and lower bounds are equal	
Now� if the modulo is not zero� theorem �� has to be considered �for one part of case ����� and�
if the common modulo is zero� then both o�sets are one by de�nition and the representative
bounds have to be equal modulo m �which is indeed taken into account by case �����	
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CHAPTER IV

ABSTRACT INTERPRETATION OF INTERVAL CONGRUENCES

This chapter is devoted to the design of some abstract interpretations using the two domains
described in Chapter III	 First the connection between these two domains is provided in
section �� its particular features are expressed in terms of the general abstract interpretation
framework �CC��b�	 Then the approximate operators on the abstract domain are determined
together with the widening operator in the section �	 Finally� section � provides the abstract
statments and is ended with a complete analysis example	

�� Semantic operators

The concrete domain CC and the abstract one IC are designed in Chapter III� we now bind
them using a pair of abstraction and concretization functions in order to give the meaning of
the abstract elements and to prove that their respective orders are coherent	

���� Soundness relation� The de�nition of a soundness relation formalizes the intuitive
concept that an integer set is well approximated by a rational one if the original integer set
is included in that given rational set	

Definition �� �The soundness relation ��� It is de�ned by

�
def
 

�
�C� I� � CC
� � IC
��

� C � I
�

The order relation � used in the de�nition is simply the usual inclusion between sets	 The
soundness relation is implied by the relation f�C� I� � CC
� � IC
��

� ��C� �� Ig� the
reciprocal is false �see in the proof of proposition �� an example illustrating that ��� 	� is not
a Galois connection� i	e	 an example of coset congruence contained in an interval congruence
for which its abstraction is not contained in that interval congruence�	

���� Abstraction� The choice of an interval congruence representing a given coset con�
gruence is formalized by the abstraction function� the chosen abstract element is one of the
minimal approximations of the concrete one	 Given one coset congruence� many interval
congruences contain it �they are provided by the soundness relation�� there are still many

��
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containing exactly the integers corresponding to the original coset congruence� �nally there
are still many of these of minimum representative width �informally the di�erence between
the upper and the lower bounds�	

Definition �� �Abstraction ��� The abstraction function is the following�

� � CC
� � IC
��

�� �l� u� hmi ��
�

l
	��

� u
	��

 �
m
	��

�
where � 
 ��� 
 jmj is an inverse of � with respect to m and with the convention that the
inverse of � with respect to � is �	

Following Bezout�s theorem �See footnote � on page ���� the abstraction function is always
de�ned ���� always exists�	
The abstraction could have been de�ned as a relation if we had not chosen a unique inverse
of � but� since a normal form exists for ��� and is easily computable� we prefer to have a
function	 For example � ��� ��� �� h�i�  

�
�
�
� 

�

 �
�
�

�
that is represented by

�� ��
q q q q q qq q q q q q qq q q q q q q� � � � � � � � � � � � � � � � � � � � � � � � � ��

�


�
� �
�

 �
�
�

�
is an other minimal interval congruence containing �� ��� ��h�i and no more integers	

It is of course non comparable with
�
�
�
� 

�

 �
�
�

�
	 This illustrates the lack of a best approximation

of an element of CC with an interval congruence	 It is optimal if 	 	 � is the identity �which
is in fact ensured by theorem ���	

���� Concretization� The concretization function associates a concrete element with an
abstract one giving its meaning	

Definition �� �Concretization 	�� The concretization function is de�ned by

	 � IC
��
� CC
�

�a� b�
�



�

�
��

�
�� ��� �� h�i if �  � and b � a and dae � bbc ����

k���� �da�e� bb�c� h�ik otherwise ����

where ��� is an inverse of � with respect to �	

The same remark as for the choice of the inverse of � in the abstraction de�nition holds here
for the choice of ���� except that all the di�erent possibilities reach here the same element
of CC
� �because of the normalization on CC� and though there is in fact no choice	 We
see that considering rational interval congruences provides a much more powerful description
of concrete properties than only considering integer interval congruences the de�nition of
which would have been quite similar to the de�nition �� replacing Q by Z	 This is a direct
consequence of the strict inclusion of these integer interval congruences in IC	 An example
of concretization is�
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(�
�

�
�
�

�

��
�

�

�)
 �� ��� �� h�i  �� h�i� � �� h�i� � �� h�i� � �� h�i�

To prove the fundamental property about 	� we �rst need to show a su�cient condition for
two interval congruences to have the same integer subset	

Lemma �� �Equal integer subset with identical modulo�� Let � be a non zero po�
sitive integer and I�  �a�� b��

�



�

�
and I�  �a�� b��

�



�

�
two interval congruences such that

da��e � bb��c and da��e � bb��c� I� and I� have the same integer subset if

da��e 
 da��e  bb��c 
 bb��c � h�i����

Proof� Theorem �� associates to I� the equation x � �a�� b��
�


�

�
� which has the same

integer solutions� as the equation

x �

�
da��e

�
�
bb��c

�

��
�

�

�
An equivalent deduction is satis�ed for I� and equation ���� proves the equality of equa�
tions	

For example
�
�


� 

�

 �
�
�

�
contains the same integers as

�
�
�
� �
�

 �
�
�

�
�� �

� � � � � ��

�� �
� � � � � ��

The next step establishes that the concretization function corresponds to our initial goal to
express the integer subset of an interval congruence	

Theorem �� �Correctness of 	�� The meaning 	�I� of an interval congruence I is its
intersection with Z�

�I � IC 	�I�  I �Z

Proof� We do not have to consider here the normalization step in the concretization
process since it does not change the resulting integer set	 Let us consider the di�erent cases
for an interval congruence I  �a� b�

�


�

�
�

a  b 
 �  � 
 da�e � bb�c	 The resulting interval congruence is the interval �a� a�
and since dae � bbc� a ��Zand its integer subset is empty	
a 
 b
 �  � 
 da�e � bb�c	 Since dae � bbc� a and b are two distinct rational num�
bers without any integer between them� the resulting interval congruence is �a� b� h�i
and its integer subset is empty	

� A basic result for solving arithmetical congruence equations states that �x � a mod 	q�
 	�� a� q �

Q� has an integer solution if and only if gcd 	�� q� divides a� da��e
�

is the smallest rational representative
greater than a� for which the preceding property is veri�ed in the equation corresponding to I�� The

symmetrical result holds for bb��c
�

�
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a � b
 �  � 
 da�e � bb�c	 The resulting interval congruence corresponds to �a����
� �
�� b� and its concretization �� �dae� bbc� h�i to �dae���� � �
�� bbc� which is
exactly the integer subset of �a���� � �
�� b�	
� � � 
 da�e � bb�c	 Lemma �� proves the emptyness of 	�I� and de�nition �� the
emptyness of I 	

da�e � bb�c 
 �  �	 Then 	�I�  k�� �dae� bbc� h�i k� the concretization is here the
intersection of a usual rational interval with the set of integers	

da�e � bb�c 
 � � �	 A direct consequence of lemma �� is that

I �Z 

�
da�e

�
�
bb�c

�

��
�

�

�
�Z

Then solving the resulting integer congruence equation

�x � � mod � 
 da�e � � � bb�c����

provides an expression of I�Z	 The solution set of equation ���� is the union of a set
of cosets with identical modulo � and with representative a particular solution that
is given for example by x�  �� such that �� � � h�i �hence gcd��� ��  �� which is
exactly the description of 	�I�� the coset congruence of o�set �� lower bound da�e�
upper bound bb�c and modulo �	

���� Characteristics of the connection ��� 	�� Two classes of abstract properties are
�rst characterized with respect to their meaning� then the structure of the abstraction&
concretization connection is dealt with� which directly results from the fact that our domains
are not Moore families	

Proposition �� �Characterization of 	������� Let I  �a� b�
�


�

�
be an interval con�

gruence� It is empty if and only if ��
�

� � � � a � b

da�e � bb�c

Proof� Considering lemma ��� the case ���� of the concretization de�nition always leads
to the empty integer set	 By lemma ��� the case ���� is the empty integer set if and only if
� � � and da�e � bb�c	
The last equality directly results from the theorem ��	

For example
�
�

�
� ��

�

 �
�



�
does not contain any integers� as is visible on

�� �
�� �� �� �� �� �� �� ��
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Proposition �� �Characterization of interval congruences containing Z��Let
I  �a� b�

�


�

�
be an interval congruence� It contains Zif and only if������

�����

�  � 
 dae  bbc� � 
 b 
 a ����
�

a  
� 
 b  �� ����
�

� 
 � � bb�c 
 da�e� � ����

Proof� Theorem �� transforms the problem into characterizing 	���Z�	 The �nal result
comes from lemma ��	

For example
�
��
� �

�

�

 �
�



�
and

�


� �

�
�

 
h�i contain the set of integers	

These two propositions provide tests on the emptyness and the fullness of the meaning of an
interval congruence which are very frequently used operators in the implementation of the
program analyzer	

Proposition �� �Structure of ��� 	��� The pair of maps ��� 	� is not a Galois connec�
tion�

Proof� Recall that ��� 	� would have been a Galois connection if

�C � CC� I � IC ��C� �� I � C � 	�I�

that is equivalent to stating that for every interval congruence I � ��	�I��  I 	 However the
coset congruence C  �� ��� �� h�i

�� �
r rr rr r

is less than 	�I�  	
��



�
� ��

�

 �
��
�

��
 ��� ��� ��� h��i

�� �
rr rr r rr r r rr r r

but its abstraction ��C�  � ��� ��� �� h�i�  
�
�
�
� 

�

 �
�
�

�
�� �

� � � � � ��

is not comparable with I  
�


� �

��
�

 �
��
�

�
�� �

� � � � � � � � � � � ��

which contradicts the Galois connection character of the pair ��� 	�	

Hence the usual framework of �CC��� cannot be used and �CC��b� shall be used instead	

���� Normalization on IC� A major consequence of the normalized feature of the con�
crete coset congruences is that 	 	 � is the identity operator	 We are now going to consider
the inverse operator � 	 	 as a normalization operator on IC	
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Proposition �� �Semantic minimization�� Let I  �a� b�
�


�

�
be an interval congruence

containing integers but not Z� �
da�e

�
�
bb�c

�

��
�

�

�
is the smallest interval congruence with the same concretization and modulo as I�

�I� � IC

(
�

�

)
� � I� �Z I �Z� Z �

�
da�e

�
�
bb�c

�

� �
�

�

�
�� I�

Proof� If the modulo of I is zero� the result is easy to get	
Suppose now that I has a non zero modulo and does contain integer elements	
As stated in the proof of theorem �� the coset congruence ���� �da�e� bb�c� h�i is the integer
subset of I � it is the collection

���da�e h�i � ��� �da�e � �� h�i � � � � � ���bb�c h�i

of integer cosets� where ��� veri�es ����


 �	 In order to �nd the smallest rational interval

congruence with modulo 


�
containing this set of integer cosets� let us start by determining

the smallest rational coset with modulo 


�
containing the integer coset ��� �da�e� i� h�i�

� � i � bb�c 
 da�e	 It is easy to see that this rational coset is ��� �da�e � i�
�



�

�
� which is

equal� to da�e�i
�

�



�

�
	 Since � � �� I �Z� � and I �Z� Z� propositions �� and �� imply

� � bb�c 
 da�e 
 � 
 �

The set of representatives of the cosets of the collection
�
da�e�i

�

�


�

��
��i�bb�c�da�e

have the

shape of aggregates of bb�c 
 da�e � � values separated by �
�
� the aggregates are separated

from each other with a distance of 

�
following the scheme�

�� ��
x x x xx x x xx x x xx x x x

�

�

�

�

In order not to add new integer elements to the resulting interval congruence� its representative
should not add other multiples of �

�
than the ones �guring in the rational coset collection and

hence the smallest interval congruence containing them is
h
da�e
�
� bb�c
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This �rst kind of normalization �not the one that will be �nally considered� transforms�
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We now state that 	 selects the set of maximal concrete properties with respect to the
soundness relation �� that is here the greatest integer set contained in an abstract element
�which is a coset congruence�	

Corollary �� �Concrete maximality assumption�� Let I be an interval congruence
and C a coset congruence�

C  	�I� �

��
�

C � I

�C� � CC
� C � C� � I � C� � C
����

Proof� It results from the de�nition of 	 as intersection with Z	

In order to provide a unique representation of semantically equivalent abstract properties� a
normalization is introduced	

Definition �� �Normalization ��� Let us de�ne the normalization operator � on IC
��

by
�  � 	 	

The normalization operator replaces an abstract property by a more precise one or by a
non comparable one� but without increasing the accuracy of the corresponding concrete el�
ements	 If the result is smaller than the original interval congruence� then the analysis will
be more precise and� if it is non comparable� the experimentation justi�es the use of such a
normalization in practice	 For example
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The rational intervals not containing any integers have been removed by the normalization
and the modulo has increased� this is the consequence of two processes that are part of ��
the narrowing of interval bounds in order for these bounds to be in rational cosets containing
integers �see proposition ��� and the choice by the normalization on CC of a particular o�set
�hence the increase of the modulo�	
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�� Abstract operators

The goal of this section is to deal with the operators on the abstract domain that are
needed for the analysis	 Exact meet and join algorithms are not de�nable since IC is not a
complete lattice� hence only safe approximations of them are de�ned	

���� Conversion� As is illustrated below in the de�nition of the approximate join oper�
ator the only really needed conversion consists in �nding the smallest interval congruence of
IC�q� containing a given interval congruence when the new modulo divides the one of the
original congruence	 For reasons that appear in the approximate join de�nition� the result of
a conversion operation must have the new modulo �even in the degenerate cases�	

Definition �� �Conversion to a divisor of the modulo Conv�� Let q� be a ratio�
nal number and I  �a� b� hqi an interval congruence such that q� divides q	 The conversion
of I to modulo q� is de�ned by

Convq� �I�
def
 

�
�a� a� q�� hq�i if b 
 a and q  � and q� � �

�a� b� hq�i otherwise

This conversion algorithm is optimal in the sense that it gives the smallest interval congruence
containing the original one and of given modulo	

���� Join� The goal of this section is to �nd an algorithm that determines� given two
interval congruences� a minimal element containing both of them	 If they are comparable�
the problem has an optimal solution and will not be considered	 Otherwise the interval
congruences are converted to a common modulo and two di�erent possible upper bounds are
compared using the accuracy function � on their meaning	 Hence the main question is to �nd
a minimal upper bound for two interval congruences with same modulo	 Only one particular
case �the interleaved relation ����� leads to two non separable solutions and is arbitrarily
solved at implementation time	 The resulting join operator is not associative and a slightly
di�erent solution
 to that latter problem would provide a commutative union but with a loss
of information	

Join with constant modulo

The interleaving of two interval congruences expresses the impossibility of �nding a unique
interval congruence containing the �rst one with the same common modulo and of minimal
representative width �try and apply the de�nition below of interval�like join to one of the
above examples of interleaved interval congruences�	


Just taking the optimum of IC to approximate this kind of union�
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Definition �� �Interleaved o�� Two interval congruences I�  �a�� b�� hq�i and I�  
�a�� b�� hq�i are said to be interleaved� noted I� oI�� if they have the same modulo q  jq�j  jq�j
and���������
��������

q  � 
 b� 
 a� � b� 
 a� 
 a� � b�  a� � b� ����
�

q � � 
 � � b� 
 a� 
 q 
 � � b� 
 a� 
 q 
 a�� b� �� I�

 I� ��� I� 
 b� 
 a�

q
 b� 
 a� ����

�
I� o I�

For example ��� �� h�i and ��� �� h�i are interleaved following the scheme of expression ����

�� �
� � � �� � � � � �

stating that the two interval congruences of non zero modulo are neither empty nor Q� have
no common elements and that� given one representative of one of them� the two nearest
representatives of the other are at the same distance from the �rst one	
On the other hand ���
�� h�i is interleaved with �
�� �� h�i following the scheme ����

�� �
� � ��

stating that the �rst interval congruence with zero modulo is �nite when the later one is
in�nite� they have no common element and their bounds have the same center	

Definition �� �Interval�like join t� 	�� Given two non interleaved elements I� and I�
of IC�q�� their interval�like join I� t� 	 I�  �	� 	�� hqi is an interval congruence of modulo
q containing I� and I� and of minimal value of the di�erence between its upper and lower
bounds	

�K  �c� c�� hqi � IC

��
�

K ��� I� t� 	 I�
I� �� K
I� �� K

��
� �



K ��� I� t� 	 I�
c� 
 c � 	�
 	

Since when considering all the particular cases of interval congruences the only ones not
providing a unique interval�like join as de�ned above are the interleaved ones� t� 	 � IC�q��
IC�q� � IC�q� is well de�ned	 The existence of the interval�like join is proved by the
algorithm given in appendix B	

Join to a divisor of the modulo

An alternative to the interval join t� 	 naturally de�ned for two interval congruences of same
modulo is the congruence join t


 that �rst converts them to a divisor of the modulo following
the de�nition �� and then makes an interval join	 The new modulo is chosen such that the
converted representatives overlap	
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Definition �� �Congruence�like join t


�� Given two non comparable interval con�
gruences I�  �a�� b�� hq�i and I�  �a�� b�� hq�i of same modulo q  jq�j  jq�j	 Let r be
the divisor of q that is the smallest rational closest to the distance d between I� and I�
representative centers	 The congruence�like join I� t


 I� is �
����� h�i if d is zero� it is
de�ned by

I� t


 I�
def
 Convr�I�� t� 	 Convr�I��

if the negation of the interleaving condition ���� �q � � � a� � b� � b� 
 a� � a� �
b� � a� � b� � a� � b�� is veri�ed and otherwise �a�� b�� h�i or �a�� b�� h�i	

The concept of distance between two representatives denotes the smallest distance consid�
ering all possible representative pairs	 Notice that if at least one of the interval congruence
representative widths is in�nite then the congruence�like join of the two interval congruences
is �
����� h�i so that the mentioned distance between the representative centers is chosen
as we want	
This kind of join is a good alternative to interval�like join for the case where the interval

congruences are interleaved following expression ����	 The only case we are not able to deal
with is the interleaving of expression ���� where the exact join of interval congruences is
approximated either by �a�� b�� h�i or by �a�� b�� h�i with the same precision	 The following
examples can be considered�

��� �� h�i t


 ��� ��h�i  
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��	 � � � � � � � �� �� �� �
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when

��� �� h�i t� 	 ��� �� h�i  ��� �� h�i����

��	 � �� �

t� 	

��	 � �� �

 

��	 � �� �

��� �� h�i t� 	 ��� �� h�i  ��� �� h�i����

��	 � �� �

t� 	

��	 � �� �

 

��	 � �� �

Intuitively comparing the examples ���� and ����� the interval join seems to be more adapted
to this case� while comparing the examples ���� and ���� the congruence join seems to be
closer to the exact join on rational sets	 It is clear that no optimal join exists for the four
examples considered above	

Precision abstract order

An operator � is introduced that estimates� given two interval congruences� which one is
the most informative of the two� in other words� which one contains the smallest density of
integers	 It is naturally de�ned using the accuracy function on coset congruences �	

Definition �� �Choice ��� Given two interval congruences I and J � the result I � J of
the choice between I and J is one having the smallest value by � 	 		

For example �
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The reader can easily see that this precision order con�rms the intuitive preferences between
interval and congruence�like join at the end of the preceding paragraph	

Approximate least upper bound

Finally we get the following approximation of the least upper bound operator �the one de�ned
on P�Q�� on IC�

Definition �� �Approximate join t�� Given I�  �a�� b�� hq�i and I�  �a�� b�� hq�i two
interval congruences� their approximate join I� t I� is equal to����

���
I� if I� �� I�

else I� if I� �� I�
else I �� t


 I

�
� if I �� o I

�
�

else �I �� t� 	 I
�
�� � �I

�
� t


 I

�
��

where I ��  Convgcd �q��q���I�� and I
�
�  Convgcd �q��q���I��	

Of course� it is possible to re�ne this de�nition� especially in the case where the choice between
the congruence and the interval joins is arbitrary �the accuracy of their concretizations are
equal�	
Let us look at a necessary re�nement of the least upper bound that has to do with the

initialization of the iteration process during the analysis	 During the analysis of the program
x �� �


���� while true do

�
�� x �� x � �


���� od


����

it is determined at the �rst iteration and program point f��g that x may be equal to �� the
second iteration indicates that x may be equal to � or to � hence resulting in the abstract join
of ��� ��h�i and ��� �� h�i	 Following our de�nition� this join result in ��� �� h�i and corresponds
to what we expected	 Nevertheless� it might be not always the case that the approximate join
determines at the �rst iteration which of the two strategies is preferably chosen	 The solution
is to keep during a small number n of iterations the two join alternatives and then choosing
among the resulting �n interval congruences with the choice operator	

���� Intersection� The goal of this section is to �nd an algorithm that determines� given
two interval congruences� a minimal element containing their exact intersection	 If they are
comparable the problem has an optimal solution and will not be considered	 Otherwise
the interval congruences are converted to a common modulo and two di�erent possible upper
bounds are compared using the accuracy function � on their meaning	 Hence the main question
is to �nd a minimal upper bound of the intersection of two interval congruences with same
modulo	 Only one particular case �the overlap relation ����� leads to two non separable
solutions and is arbitrarily solved at implementation time	 This approximate intersection
operator is not associative and a slightly di�erent solution� to that latter problem would

�Just taking the optimum of IC to approximate this kind of intersection
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provide a commutative intersection but with a loss of information	

Intersection with constant modulo

The overlapping of two interval congruences expresses the impossibility of �nding a unique
interval congruence contained in the �rst ones with the same common modulo and of minimal
representative width	

Definition �� �Overlap ��� Let I�  �a�� b�� hq�i and I�  �a�� b�� hq�i be two interval
congruences� I� and I� overlap� which is noted I� � I� if they have the same modulo q  
jq�j  jq�j and���������
��������

q  � 
 b� 
 a� � b� 
 a� 
 a� � b�  a� � b� ����
�

q � � 
 � � b� 
 a� 
 q 
 � � b� 
 a� 
 q 
 a�� b� � I�

 I� ��� I� 
 b� 
 a�  b� 
 a� ����

�
I� � I�

For example ��� �� h�i and ��� �� h�i are overlapped following the scheme of expression ����

�� �
� � � � �� � � �

stating that the two interval congruences of non zero modulo are neither empty nor Q� have
common elements and that each representative of one of them intersects two distinct represen�
tatives of the other one	 On the other hand �
��
�� h�i is overlapped with ��� �� h�i following
the scheme ����

�� �
�� ��

stating that the two interval congruences with zero modulo are in�nite� their join is Q and
have the same representative width	

Definition �� �Interval�like intersection u� 	�� Given two non overlapped non com�
parable elements I� and I� of IC�q�� their interval�like intersection I� u� 	 I�  �	� 	

�� hqi is an
interval congruence of modulo q containing the elements common to I� and I� and of minimal
representative width 	� 
 		

�K  �c� c�� hqi � IC

��
�

K ��� I� u� 	 I�
K �� I�
K �� I�

��
� �



K �� I� u� 	 I�
c� 
 c � 	�
 	

Since when considering all the particular cases of interval congruences the only ones not
providing a unique interval�like intersection as de�ned above are the overlapped ones� u� 	 �
IC�q��IC�q�� IC�q� is well de�ned	 The existence of the interval�like intersection is proved
using its de�ning algorithm given in appendix C	
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Intersection to a divisor of the modulo

An alternative to the interval intersection u� 	 naturally de�ned for two interval congruences
of same modulo is the congruence intersection u


 that �rst reduces the representative safely
with respect to the exact intersection and then makes a congruence�like join which is safe
with regard to exact intersection too	

Definition �� �Congruence�like intersection u


�� Given two non comparable in�
terval congruences I�  �a�� b�� hq�i and I�  �a�� b�� hq�i of same modulo q  jq�j  jq�j� then
the congruence�like intersection u


 is de�ned by

I� u


 I�
def
 �a�� b

�
�� hqi t


 �a�� b

�
�� hqi

where b�� �resp	 b
�
�� is the smallest element of fb�� kq� k �Zg �resp	fb�� kq� k �Zg� greater

than a� �resp	 a��	

Like the interval�like intersection� the congruence�like intersection is a safe approximation of
exact set intersection	
This kind of intersection is a good alternative to interval�like intersection for the case where

the interval congruences are overlapped following expression ����	 The only case we are not
able to deal with is the overlap of expression ���� where the exact intersection of the interval
congruences is either approximated by �a�� b�� h�i or by �a�� b�� h�i with the same precision	
The following examples are considered�

��� �� h�i u
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� ��

�
h�i  ��� ��h�i t
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�
h�i

 ��� ��

�
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�

�

��	 � �� �

u




��	 �� � �

 

��	� � � � � �� �

provides only an approximation of the intersection on P�Q�� while

��� ��h�i u� 	 ��� �� h�i  ��� ��h�i

��	 � �� �

u� 	

��	 � �� �

 

��	 � �� �

corresponds to the exact intersection and hence is optimal	
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Intuitively� the purpose of de�ning such intersection algorithms is to provide a more accu�
rate approximation than just choosing one of the original interval congruences	 As for the
join operator� the two algorithms are complementary and are used in di�erent situations �us�
ing the non adequate algorithm on the examples given above would only result in a loss of
precision on the result�	

Approximate greatest lower bound

Finally we get the following approximation of the greatest lower bound operator �the one
de�ned on P�Q�� on IC�

Definition �� �Approximate intersection u�� Let I� �a�� b�� hq�i and I� �a�� b�� hq�i
be two interval congruences	 Their approximate intersection I� u I� is equal to����

���
I� if I� �� I�

else I� if I� �� I�
else I �� u


 I

�
� if I �� � I ��

else �I �� u� 	 I
�
�� � �I

�
� u


 I

�
�� � I� � I�

where I ��  �a� � k�q�� b� � �k� � l� 
 ��q�� hqi and I ��  �a� � k�q�� b�� �k� � l� 
 ��q�� hqi and
q  lcm�q�� q��  l�q�  l�q�� k� and k� are integers minimizing the value of ja� � b� 
 a� 

b� 
 q� � q� � q � ��k�q� 
 k�q��j	

The rather complex choice of I �� and I
�
� in the last de�nition simply is the expression of the

conversion of I� and I� to a common modulo lcm�q�� q�� where the distance between their
representative is as important as possible �hence the minimization of ja�� b�
 a�
 b�
 q��
q� � q � ��k�q� 
 k�q��j�	
Of course� it is possible to re�ne this de�nition� especially in the case where the choice

between the operands� the congruence and the interval intersections is arbitrary �the accuracy
of their concretizations are equal�	

���� Widening operator� Recall from �CC��b� that the three uses of widening operator
are the following�

��� A sound choice function� that is if a concrete property is soundly approximated by
many abstract values the widening operator discriminates between all possibilities�

��� A way to ensure convergence�
��� An accelerator to guarantee rapid termination of the iteration process for �xpoint

computation	

The �rst feature is part of the de�nition of the abstraction function � when the two last ones
are explicated in the following operator derived from the widening operators on interval �CC���
and rational arithmetical cosets �Gra��a�	



�� IV� ABSTRACT INTERPRETATION OF INTERVAL CONGRUENCES

Definition �� �Widening r�� Let I�  �a�� b�� hq�i and I�  �a�� b�� hq�i be two interval
congruences	 Their widening I�rI� is de�ned by��������������
�������������

h
da��e��

�
� bb��c��

�

i �


�

�
if q�  q�  



�
� � ����

�a�� a� � q�� hq�i if � � q� � q� � � ����

�a� b� h�i if



q�  q�  �
b� � a� 
 b� � a�

����

I� t I� otherwise ����

where if a� 
 a� then a  
� else a  a� and if b� 
 b� then b  �� else b  b�	

Notice that in order to be more precise than a sign analysis� the widening on two �nite
rational intervals only has to jump to zero before extrapolating the in�nite values if the
in�nite extrapolation value is not of the same sign as the original one	 This additional feature
does not �gure in the widening de�nition as a matter of simpli�cation	

The correctness of r is a direct consequence of the correctness of classical widenings on
intervals �case ����� and rational arithmetical congruences �case ���� where moreover a par�
ticular interval congruence representing Q is chosen for technical reasons�	 In addition� it is
su�cient to remark that

� the situation where q� is zero and q� is not �case ����� has not to be considered since it
cannot take place in an in�nite increasing chain� an interval congruence of zero modulo
must be of in�nite width in order to be greater than an interval congruence of non zero
modulo which in turn is greater than an interval congruence of null modulo only if
the latter one is of �nite width	 Hence an in�nite increasing chain containing interval
congruence of null modulo will necessarily contain two consecutive such elements	

� in the case where the two original interval congruences have the same non zero modulo
�case ������ the widening ensures convergence in �nite time by embedding the repre�
sentative in a new one adding integer cosets in the corresponding coset congruence
hence accelerating the termination of the iteration process	

First recall the classical widening operator used on intervals with the following examples�

��� �� h�ir ��� ��h�i  ������ h�i

��� ���h�ir ��� ���h�i  ��� ���h�i

�
���
�� h�ir �
��� ��h�i  �
������ h�i

Then the congruence�like behavior of our widening operator is illustrated by��
�
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� �
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and �nally the last kind of widening process �apart from the approximate join operator� is
exampli�ed in� �
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�� �
� � � � � � � � � � � � � � � � � � � � � �

where at most three more applications of r lead to an interval congruence containing Z�look
at the respective meaning of the originals and resulting interval congruences�	
The widening operator is improvable by a slight modi�cation of case ����	 Instead of

widening both of the interval bounds� the operator might modify only one of them� this
is especially recommended when the other bound is the same in I� and in I�	 An other
alternative to case ���� is enabled by the duality of the interval congruence model	 Indeed�
instead of keeping a zero modulo� a non zero is possibly introduced depending on program
parameters	
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�� Abstract primitives

De�ning �rst abstractions of integer sum and product by a constant allows us to deal with
assignments of a�ne expressions to integer variables	 Then abstracting a given class of tests
gives the possibility to take into account control !ow information in the analysis	 The entire
design of an abstract interpretation requires also the de�nition of backward abstract primitives
to deal with backward analysis and improve the accuracy of the resulting combimation of
forward and backward analyses	 Those primitives are easily deduced from their interval and
congruence counterparts	
The following abstract primitives are chosen to be sound� i	e	 if F is the concrete primitive

and � the abstract one� we have F � 	 	 � 	 �	

���� Abstract sum�

Definition �� �Abstract sum ��� Let �a�� b�� hq�i and �a�� b�� hq�i be two interval con�
gruences� their abstract sum� noted �a�� b�� hq�i � �a�� b�� hq�i� is ��� �� h�i if the concretization
of one operand is the empty set and otherwise is de�ned by��

�
� ��a� � a�� b�� b�� hgcd �q�� q��i� if qi � �� ai � bi� i � f�� �g

��� �� h�i otherwise

Proof� �of the soundness of �� We need to prove that the abstract sum is safe� that is for
every interval congruence I� and I�

	�I�� � 	�I�� � 	�I� � I��

The result is trivial either if an operand has an empty meaning or if at least one operand is of
null modulo with its lower bound greater than its upper bound	 Suppose we are not in this
case and show that

I� � I� � I� � I�

x� � I� �resp	 x� � I�� if and only if x�  �� � k�q� �resp	 x�  �� � k�q�� where a� �
�� � b� and k� � Z �resp	 a� � �� � b� and k� � Z�	 Hence x� � x�  �� � �� �
�k�q

�
� � k�q

�
�� gcd �q�� q�� where q�  q�� gcd �q�� q�� and q�  q�� gcd �q�� q��	 The mentioned

inclusion of interval congruences follows	 Then we have �I� � I�� �Z� �I� � I�� �Zand
since �I� �Z� � �I� �Z� � �I� � I�� �Zand 	 is the intersection with Z� the correctness is
established	

Notice that the de�nition of abstract sum is commutative which seems natural� unfortunately
the abstract sum is not exact� i	e	 generally I� � I� � I� � I� and I� � I� is not the smallest
interval congruence containing I�� I�� Generally� the smallest interval congruence containing
I� � I� does not exist	
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Examples

First illustrating the else branch of the de�nition� take

���
�� h�i � ��� �� h��i  ��� �� h�i

Then an example of non zero modulo sum�
�

�
�
�

�

�
h��i �

�
��

�
� �

�
h��i  �

(�
��
�

�

�
h�i

)
 ��� �� h�i

where it is visible that normalizing the operands before doing the abstract sum would have led
to a more precise result ���� �� h�i� by not accumulating $errors% on the bounds of the interval
congruences	 That is why the results of the abstract statements �abstract expressions� are
normalized	

���� Abstract product by an integer�

Definition �� �Abstract product ��� Given an integer � and an interval congruence
I  �a� b� hqi� their abstract product is ��� �� h�i if the meaning of I is empty and otherwise

�� �a� b� hqi
def
 

��
�

� ���a� �b�h�qi� if � � �
��� �� h�i if �  �
� ���b� �a�h�qi� if � 
 �

Proof� �of the soundness of �� We need to prove that the abstract product is safe� that
is for every interval congruence I

� � 	�I�� 	��� I�

Cases where � is zero or where the interval congruence meaning is empty are straightforward	
Suppose I  �a� b� hqi and � is strictly positive �and 	�I� � �� ��� �� h�i�� then � � ��a� b� hqi�
is equal to ��a� �b�h�qi and � � 	�I�  � � �I �Z� � �� � I� �Z 	 �� ���a� �b�h�qi��� since
	 	 �  �	 	 �� 	 	  		 The case where � 
 � has a similar solution	

Examples


� � �
�� �� h�i  �
������ h�i while �� ��� �� h�i  ��� �� h��i	
Other arithmetical abstract primitives could be de�ned such as product by a rational� modulo
and euclidian division	 But since only very special cases would lead to accurate results� and
the other cases would be long� simple and not very useful �in a �rst approximation� to de�ne�
they are not given here	

�Think of �a� b� hqi amod r where amod is the abstract modulo function and r divides q
 then
�a� b� h�i is a good approximation of the exact result�
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���� Abstract test� The de�nition of the abstraction of the test statement is usually
divided into two steps	 First tests involving conditional expressions expressed by the approxi�
mate invariants of the analysis �here interval congruences� are considered	 Then more general
conditional expressions are safely approximated and the �rst step is applied	

Definition �� �Abstract test with an ARCEBR condition�� Let I�  �a�� b�� hq�i
be an abstract context preceding a test with the condition equation x � �a�� b�� mod q�	 The
abstract entry context in the true branch of the conditional is

I� u �a�� b�� hq�i

while the abstract entry context in the false branch of the conditional is

I� u ��	��a�� b�� hq�i��

Proof� �of the soundness� Since for all interval congruences I and J in CC� I � J � I u J

and 	 �I� � 	�J�  �I � Z� � ���	�J�� � Z� �
�
I u ��	�J��

�
�Z 	

�
I u ��	�J��

�
� this

abstract test is correct	

Notice that the test condition is easily extended to an equivalent linear equation by �rst
approximating it with an arithmetical rational congruence equation with bounded represen�
tative	
A major improvement with respect to the existing analyses using congruence properties on

integers is that the negation of the natural condition �here an arithmetical rational congruence
equation with bounded representative� is also quite natural	 Recall that the meaning of a
rational interval congruence is its integer points	

���� Precision ordering with the related analyses� Though the operators on the set
of interval congruences are inspired by the corresponding ones on the lattices of intervals and
cosets� the resulting analysis is not comparable with these two	 Let us have a look for example
at the approximate join operator	 On the example

��� ��h�i t ��� �� h�i  ��� ��h�i

the join operator has the same behavior as �is as precise as� the one of the lattice of intervals
while on the example

�
��
�� h�i t ��� �� h�i  ��� �� h�i

they are clearly non comparable ��
��
�� � ��� ��  �
�� ���	 The same feature results from
the consideration of the example

��� �� h��i t ��� �� h��i  

�
��
��

�

��
��

�

�
the concretization of which is ��� ���� ��� h��i which is more precise than Z�the result of the
application of the join operator on integer cosets� while

��� �� h��i t ���� ���h��i  ��� �� h��i



�� ABSTRACT PRIMITIVES ��

which is clearly non comparable with the result of the same operation on the lattice of integer
cosets	 The same kind of behavior results from the de�nition of the other abstract operators
and abstract statements	
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point initially �rst iteration
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f
�g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f�
�g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�

point second iteration third iteration
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ������ h�i � �� ��� �� h�i � �� ������ h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ������ h�i � �� ��� �� h�i � �� ������ h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f
�g ��� ��� �� h�i � �� ��� �� h�i � �� ������ h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ������ h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f��g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�
f�
�g ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i� ��� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i�

Table IV��� Example of iteration process

���� Example� Let us consider the following program
���� i �� �


�
�� while test�on�i do

���� x �� ��i


���� if even	i� then

���� y �� ��i � �

���� else

���� y �� ��i � �

���� endif


���� A�x�y� �� A�x���y��� � A�x�
�y�
�


i �� i � �

����� endwhile


where i�x and y are integer variables� A an array of dimension � and test on i a boolean
expression that is not taken into account by the analysis	
The analyzed program� instead of being very complex or requiring all the subtilities of the

interval congruence analysis� illustrates the basic idea of our analysis	 The exact information
to approximate in this program is congruence like� but not quite� since the test inserted in
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the loop makes it fail� only interval congruences can take this information into account	
The iteration process is summarized in table IV	�	 In this table � �I�X� Y � at line fn�g

and in column $i th iteration% stands for� during iteration i at program point fn�g the values
of i� x and y are approximated respectively by the integer sets I�X and Y 	 The safe static
approximation is given in the last column where the �xed point is reached	 Each element
of the represented tuples stands for the meaning uniquely associated with the corresponding
abstract interval congruence in the iteration process	 The normalization operator is essential
here to describe the analysis results	
The iteration starts without knowing anything about the variables as it is stated in the

$initially% column	 Then the abstract primitives and the widening are used to determine
the other columns values	 Notice that the congruence behavior of the widening is preferred
at point f��g �it detects that fig is in fact the loop index� when the interval behavior is
preferably chosen at points f��g and f�
�g	 The fourth iteration giving the same results as
the third one �telling the analyzer that the �xpoint is reached� is done by the analyzer but is
not represented here	
The important result of analyzing this program with interval congruences is that the three

references to the array A are shown to be independent	 It is easy to see that

�� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i  �

�� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i  �

�� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i � �� ��� �� h�i  �
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APPENDIX B

Interval�like join algorithm

Given I�  �a�� b�� hqi and I�  �a�� b�� hqi two non interleaved non comparable interval con�
gruences� their interval�like join is determined as follows�
if q 	 � then

if a� � b� then
if a� � b� then �min 
a�� a���max
b�� b��� h�i
else

if b� � b� � a� then
if a� � b� then �a�� b�� h�i
else

if a� � b� � a� � b� then �a�� b� � h�i
if a� � b� � a� � b� then �a�� b� � h�i

if b� � a� then
if a� � b� then ������� h�i
else �a�� b�� h�i

else
if a� � b� then call the algorithm with permuted parameters
else

if a� � b� then ������� h�i
if b� � a� � a� � b� � b� then �a�� b�� h�i
if a� � a� then

if b� � b� � a� then �a�� b�� h�i
if b� � a� then ������� h�i

else
if a� � I� then

if b� � I� then �a�� a� � q� hqi
else U�

else
if b� � I� then U�

else
if l
U�� � l
U�� then U�

if l
U�� � l
U�� then U�

where U�  �a��mink�Zfb� � kq � a�g� hqi and U�  �a��mink�Zfb� � kq � a�g� hqi and
l��a� b� hqi�  b 
 a	 Notice that all the missing cases correspond to comparable or inter�
leaved interval congruences	

��
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APPENDIX C

Interval�like intersection algorithm

Given I�  �a�� b�� hqi and I�  �a�� b�� hqi two non overlapped non comparable interval con�
gruences� their interval�like intersection is determined as follows�
if q 	 � then

if a� � b� then
if a� � b� then

if max 
a�� a�� � min
b�� b�� then �max
a�� a���min
b�� b��� h�i
else ��� �� h�i

else
if b� � b� � a� then

if a� � b� then �a�� b�� h�i
else ����� h�i

if b� � a� then
if a� � b� then I�
else �a�� b�� h�i

else
if a� � b� then call the algorithm with permutted parameters
else

if a� � b� then I� � I�
if b� � a� � a� � b� � b� then �a�� b�� h�i
if a� � a� then �a�� b�� h�i

else
if a� � I� then

if b� � I� then I� � I�
else U�

else
if b� � I� then U�

else ��� �� h�i

where U�  �a��mink�Zfb� � kq � a�g� hqi and U�  �a��mink�Zfb� � kq � a�g� hqi	 Notice
that all the missing cases correspond to comparable or overlapped interval congruences	

��
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Part 	

SEMANTIC ANALYSIS OF TRAPEZO�ID CONGRUENCES



��



CHAPTER V

DESIGN OF A RATIONAL RELATIONAL MODEL

The analysis of trapezoid congruences requires two di�erent domains� a �rst one of integer
properties� for precision� and a second one of rational properties� for the e�ciency of its
basic algorithms	 Although the relational coset congruence domain is presented before the
trapezoid congruence one� we see in Chapter VI that the integer relational coset congruences
are naturally deduced from the rational trapezoid congruences	 The content of this chapter
and the next one corresponds to a revision of �Mas���	

�� Notations

The notations of Chapter II are used	 In addition� we need to extend some notations to
rational intervals	

Definition �� �Rational interval linear combination�� Let I�  �a�� b�� and I�  
�a�� b�� be two rational intervals of possibly positive in�nite upper bound and possibly negative
in�nite lower bound and � a rational number	 The sum of intervals� their product and sum
with a constant are de�ned by

�� I�
def
 �a� � �� b�� ��

� � I�
def
 

�
��a�� �b�� if � � �

��b�� �a�� otherwise

I� � I�
def
 �a� � a�� b� � b��

The dot product is extended to deal with vectors of rational intervals

���� ��� � � � � �n��

	
BBB

�a�� b��
�a�� b��
			

�an� bn�

�
CCCA def

 �� � �a�� b�� � �� � �a�� b�� � � � �� �n � �an� bn�

��
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�� The set RCC of relational coset congruences on Zn

The relations we are now interested in correspond to a generalization of both relational
arithmetical cosets and integer trapezoids �a special case of polyhedron corresponding to a non
singular� system of linear inequations of the formAX � b 
 a � AX�	 An integer trapezoid is
a set of relational arithmetical cosets of zero modulo and consecutive representatives	 Hence�
the following model consists in sets of relational arithmetical cosets of identical modulo and
consecutive representatives	 It is designed so to be the intersection with the set of rational
tuples Qn of the rational model of trapezoid congruences which is provided in section �	

���� De�nition� The notion of coset congruence is generalized toZn	 In fact only the set
of coset congruences that are not a complementary of a �nite interval is generalized	

Definition �� �LCCE�� Let �� �l� u� hmi � CC
� be a normalized coset congruence and
���� ��� � � � � �n� � Zn� such that gcd���� ��� � � � � �n� m�  �	 The Linear Coset Congruence
Equation �LCCE�

��x� � ��x� � � � �� �nxn � �� �l� u� hmi

is de�ned by the linear congruence equation system with integer unknowns�
l���u

��x� � ��x� � � � �� �nxn � �� mod �m�

Notice that� excepted when the modulo of the linear coset congruence equation is zero� the
complementary of its solution set is the solution set of the LCCE with the same linear coe��
cients and the complementary of the initial coset congruence	 When the modulo of the LCCE
is zero� the only cases for which the set of LCCEs solution sets is closed under complementa�
tion are the cases where they are empty� equal to Zn� or half spaces	
It is possible to extend the preceding de�nition since the choice of coe�cients of the equation

prime with the modulo of the LCCE can be omitted �and the division of the whole equation
by gcd���� ��� � � � � �n� m� provides an equivalent equation satisfying the primality condition

��	
Now we are able to de�ne our relational concrete model	

Definition �� �Relational coset congruences�� The solution sets of LCCEs non�
singular systems are called Relational Coset Congruences of Zn	 The set of Relational Coset
Congruences is noted RCC	

A relational coset congruence is represented on the �gure V	�	 It corresponds to the relational
arithmetical cosets

�
�
�

��
� �
� 


�
�����

and
�


�

��
� �
� 


�
�����

and to the single LCCE x
�y � �� ��� �� h�i	

Now� we are going to build the parametric representation of relational coset congruences
up to now equationally de�ned	 For that purpose we start by intersecting solution sets of

�Recall that a non�singular system of linear equations AX � b is such that all the rows of A are
linearly independent�

�See the proof of the theorem �� for the whole process of division�
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�

�

Figure V��� Relational coset congruence	

LCCEs	 The �rst step of the intersection process considers a special kind of LCCE in which
one operand of the intersection is a rational linear congruence equation	 Then we expect to
generalize to general LCCEs	 A direct extension of the proposition �� deals with LCCE and
follows	

Proposition �� �LCCE in a coset of Zn�� The solution set of the LCCE

��x� � ��x� � � � �� �nxn � �� �l� u� hmi����

in the coset A hMi�p��� is�
l���u

�A� ��� 
 ���� ��� � � � � �n��A�MB� hMNi�q���

where B hNi�q��� is the solution of the LCCE

���� ��� � � � � �n�M

	
BBB


y�
y�
���
yp

�
CCCA � � mod �m�����

in Zp if the equation 	 ��
 has a non empty solution set� Otherwise� the solution set of
equation 	 ��
 is empty�

Unfortunately� we did not �nd an algorithm to solve a LCCE in the solution set of an LCCE in
Zn	 Hence we do not provide a parametric representation of the relational coset congruences
by incrementaly solving the LCCEs in the solution set of the preceding ones �the principle of
that method is detailed in section �	� and provides a parametric representation of trapezoid
congruences given an equational representation�	 But following �Gra��a� we have a good al�
gorithm to solve a relational coset congruence when all the coset congruences of the LCCEs
are reduced to single cosets	 No extensions of that algorithm seem to be able to deal with
general relational coset congruences	 Hence the only solution in order to give a parametric
representation of a general coset congruence is to enumerate its constitutive cosets� each of
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which corresponds to one linear congruence equation system	 The proposition �� implies that
all these cosets have the same modulo	 The only theoretical problem concerned with this
enumeration process is the possibly in�niteness of the representative of a LCCE coset congru�
ence with zero modulo	 Methods like those of �Fea��b� provide a parametric representation
of solution sets of systems of linear constraints	 Hence the above mentioned enumeration is
obtained by partitioning the LCCE system into two subsystems� one with non zero modulo
equations and the other with zero modulo equations	

���� Equivalence relation� The only case where equivalent cosets �representing the same
integer tuples set� are easily detectable is when they are equal to Zn	

Proposition �� �Relational coset congruences equal to Zn�� A relational coset
congruence C  f'i�X � �i� �li� ui� hmiigi����p	 is equal to Zn if and only if

�i � ��� p� li � ui and �i� �li� ui� hmii  Z

Proof� C  Zn is equivalent to say that every single LCCE solution set is equal toZn	 If
it is the case for 'i�X � �i� �li� ui� hmii� then let us show that �i� �li� ui� hmii  Zand li � ui	
If mi  �� then gcd�'i��'i�� � � � �'in�  � and knowing that the solution set of the LCCE
is Zn� Bezout�s theorem implies that �i� �li� ui� hmii  Z�li � ui because otherwise the LCCE
has no solutions at all�	 Suppose now mi � �� if li � ui then the LCCE has no solutions and
if �i� �li� ui� hmii � Zthen there exists � such that �i� �� �i� �li� ui� hmii	 The solution set of
'i�X � �i� mod �mi� is not empty since gcd�'i��'i�� � � � �'in� mi�  � and is not in the
solution set of 'i�X � �i� �li� ui� hmii which is consequently not Z

n	

Of course� the equivalence of relational coset congruences is provided by comparing their
parametric representations because comparing their common modulos and then comparing
their representative sets is possible	 We do not use so costly operations and shall only use
operators that need constant time with respect to the number of cosets contained in its
relational coset congruence operands	 Hence contrary to the non relational model of coset
congruences� no normalization is explicated here	
The set inclusion induced order is possibly de�ned with respect to the relational coset

congruence parametric representation too� but once again it does not appear to be e�ciently
implementable	

���� Precision concrete order� As for the case of coset congruences� the de�nition of an
accuracy function is needed� which implements a heuristics corresponding to the informative
order	
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�

�

�

�

Figure V��� Relational coset congruences with equal accuracy	

Definition �� �Accuracy ����� Let RC  f'i�X � Cigi����p	 be a relational coset con�

gruence	 Its accuracy ����RC� is de�ned by

����RC�  
Y

i����p	

� �Ci�

�

where � is the coset congruence accuracy function	

The accuracy function estimates the density of integer points contained in a relational coset
congruence	 The most accurate relational coset congruence is of accuracy zero� it is a represen�
tation of the empty set	 As is explicated below in the below de�nition of the precision concrete
order� this de�nition of accuracy is only useful to compare two relational coset congruences
with the same dimension �see below�	 Notice that adding to a relational coset congruence an
LCCE whose coset congruence is equal to Zdoes not change its associated accuracy	 Unfor�
tunately� adding to a relational coset congruence an LCCE whose coset congruence is empty
does not always provide a zero accuracy �think of LCCEs whose coset congruences have a
greater lower bound than their upper bound�	 Hence a signi�cant improvement to the accu�
racy measure consists in removing these equations and replacing them by equivalent LCCEs
with empty solution set� before determining the accuracy of a relational coset congruence	

Definition �� �Precision concrete order ���� Let RC� and RC� be two relational
coset congruences	 RC� �� RC� if and only if

 the accuracy ����RC�� is zero or either
 the number of LCCEs with �nite width representative and zero modulo is greater in
RC� than in RC�� or

 the numbers of LCCEs with �nite width representative and zero modulo are equal
and ����RC�� � ����RC��

The elements of RCC are more precise if they are de�ned by more LCCEs with �nite repre�
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sentative and zero modulo	 The relational coset congruences RC� and RC� of the �gure V	�
corresponding respectively to the LCCEs

�x
 y � �� ��� �� h�i � y � �� ��� �� h�i�

and to

�x
 y � �� ��� �� h�i � y � �� ��� �� h�i�

have the same accuracy and hence are equivalent for the precision concrete order	 The
relational coset congruence RC� of the �gure V	� is smaller for the precision order than
C� of the �gure V	�	 Intuitively we see that RC� is of dimension one when C� is of dimension
�	
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�� The set TC of trapezoid congruences on Qn

Before getting into the de�nition of trapezoid congruences� we need to de�ne a componentwise
partial order on Qn� given n � �	

Definition �� �Basis�relative partial order on Qn�� Given an integer p such that
� � p � n and a collection Q  �Q�� � � � � Qp� of p linearly independent vectors of Q

n� the
partial order �

Q
on Qn is de�ned by�

�G�H � Qn� G �
Q
H � ����� � � � � �p� � Q

p
�� H 
 G  ��Q� � � � �� �pQp

�
I
is noted � if there is no risk of confusion	

Notice that if p  � then the relation �
Q
is equivalent to the equality	 The �gure V	� illustrates

�

�

��
��

��
��

��
��

���

u

A

��
��
Q�

�

Q� �
Q
A

��
Q

A

��
Q

A

�
Q
A

Figure V�	� Partition of Q� by the point A and the order �
Q
	

this de�nition in Q� with the basis Q  
�
� �

 �

�
and the point A  

�
�
�

�
	

���� Dual de�nitions� We are going to give two equivalent de�nitions of trapezoid con�
gruences	 These two de�nitions are both useful� the equational one for intuitive understanding
about trapezoid congruences and the parametrical one for their machine representation	 Later
in this chapter� we will see that these representations are quite complementary so that some
lattice operations or abstract operators have the use of both of them	
The notion of interval congruence is now generalized to Qn	 Actually� only the interval

congruences that are not a complementary of a �nite rational interval are generalized	
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Definition �� �RLICE�� Let �a� b� hqi be an interval congruence and ���� � � � � �n� � Qn	
The Rational Linear Interval Congruence Equation �RLICE�

��x� � ��x� � � � �� �nxn � �a� b� hqi����

is de�ned by the linear congruence equation system with rational unknowns�
a�x��b

��x� � ��x� � � � �� �nxn � x� mod �q�

Geometrically� a RLICE corresponds to a set of $thick%
 parallel hyperplanes regularly dis�
persed according to the modulo of the congruence equation	 Qn and the empty set are both
representable using RLICEs ��a� b� hqi  Q for the �rst and a � b for the latter case�	 If q is
zero� the equation ���� is possibly noted

a � ��x� � � � �� �nxn � b

and if moreover a or b is in�nite� it is omitted� for example giving

a � ��x� � � � �� �nxn

Let us now introduce a normalized form of a RLICE where its linear coe�cients and modulo
are prime	

Definition �� �Prime RLICE�� The RLICE

��x� � ��x� � � � �� �nxn � �a� b� hqi

is said to be prime if gcd ���� ��� � � � � �n� q�  �

It is always possible to get an equivalent prime RLICE from any RLICE by dividing it by
the greatest common divisor of its linear coe�cients and its modulo	 For example the RLICE


�x
 �y � 


�z �
�
�
� �

�
�

 �
��
�

�
is transformed into �x
 �y � �z �

�
�
� �

�
�

 
h��i	

Definition �� �RLICE negation�� Let E be a RLICE	 E� is its negation if and only if
the system E
E � is equivalent to the disjunction of two rational linear congruence equations	

The negation of a RLICE always exists when its modulo is non zero or its representative upper
bound is in�nite	 It is obtained by taking the complementation of the interval congruence used
for the de�nition of the RLICE following the de�nition ��	 For example the following left hand
side systems are composed of twomutually negative RLICEs� because of their equivalence with
the right hand side systems which are composed of two rational linear congruence equations


The thickness comes from the possibly non null width of the representative �a� b� in equation 	����
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�possibly identical��

�x� �y � ��� �� mod ��
�x� �y � ��� ��� mod ��

*
 



�x� �y � � mod ��
�x� �y � � mod ��

� � �x� �y

� � 
�x
 �y

*
 



�x� �y  �
�x� �y  �

Here is the de�nition of our abstract model	

Definition �� �Equational trapezoid congruence�� The rational tuple sets corres�
ponding to solutions of RLICE non�singular systems are equational trapezoid congruences of
Qn	

An equational trapezoid congruence is said to be prime if all its constitutive RLICEs are
prime	 Here is the parametric equivalent de�nition	

Definition �� �Parametric trapezoid congruences�� Let

 p� r� s and t be non negative integers such that � � p� r � s� t � n�
 S  �S�� � � � � Sp�r�s�t� � Qn�p�r�s�t be a collection of linearly independent vectors of
Qn�

 A�B � Qn and C � Qp�r�s�t such that B 
A  SC	

The parametric trapezoid congruence of Qn with lower bound A� upper bound B� shape S of
integer rank p� rational rank r� bounded rank s and unbounded rank t is the subset of Qn

noted �A�B� hSi�p�r�s�t� de�ned by�

�A�B� hSi�p�r�s�t�
def
 

���
��X � Qn


X  A� S�( � )��
) �ZpQrf�gsQt

��
O � ( � C

���
������

or equivalently in terms of rational linear cosets by�

�A�B� hSi�p�r�s�t�  
�

A �
S

X �
S

B

O �
Sp�r�s���p�r�s�t

Y

�X � Y �
�
Sp�r�

�p�r�
����

where O is the null vector and � the componentwise order	

The proof of the equivalence of the two de�ning expressions �� and �� is just a veri�cation	
Sometimes� the parentheses around S are omitted for a sake of clarity	 The relation between
C and the bounds of the trapezoid congruence is not recalled if there is no risk of confusion	
Geometrically speaking� the de�nition ���� corresponds to a set of rational tuples which are

the sum of a point A� a trapezoid fS( � Qn� � � ( � Cg and a regular distribution pattern

fS)� ) �ZpQrf�gsQt
�g �look at the �gure V	� to di�erentiate the four kinds of components
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Figure V�
� Trapezoid congruence and its underlying relational coset congruence	

of this distribution pattern�� while the de�nition ���� considers a set of rational linear cosets
of common modulo the linear subgroup hSp�ri�p�r� and consecutive representatives bounded

by A and B �for the order induced by S� and unbounded in the directions of the t last vectors
of S	 We call 


X � Y � Qn� A �
S
X �

S
B and O �

Sp�r�s���p�r�s�t
Y

*

the representative and the linear subgroup hSp�ri�p�r� the modulo of the trapezoid congruence

�A�B� hSi�p�r�s�t�	 Notice that the representative of a parametrical trapezoid congruence is not

unique	 TC�hQi�p�r�� denotes the set of all trapezoid congruences of modulo hQi�p�r� and TC
the set of all trapezoid congruences	

���� Examples� Examples will only be presented in the case of Q�� although it is often
necessary to consider much higher dimension spaces	 Let us see on an example what a para�
metrical trapezoid congruence looks like	 Figure V	� represents the parametrical trapezoid
congruence �( 


�


�

)
�

( �
�

�

)�� �
�
�



�
�

�
���������

and is the solution of the prime equational trapezoid congruence

x
 �y �

�
�
�
� �

 
h��i

�x
 �y � ��� ���h��i

too	 The two linearly independent vectors constituting the modulo have been represented
with thick arrows	 The drawn trapezoids with sides parallel to each vector of the modulo
stand for the representatives of the given parametrical trapezoid congruence	 More classical
patterns of subscript set values like strips or blocks can be easily represented by parametrical
trapezoid congruences	
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The �gure V	� summarizes di�erent kinds of shapes of parametrical trapezoid congruences
of Q�	 Example ��� is the rational linear coset( 


�


�

)� �
�

�
�



�
�

�
�����

 

�( 

�


�

)
�

( 

�


�

)�� �
�

�
�



�
�

�
���������

Example ��� is the set of bounded parallelograms�(
�
�

)
�

(
�
�

)��
� �
� �

�
���������

Then the bounded and unbounded ranks are exchanged providing the set of half strips case ����(
�
�

)
�

(
�
�

)��
� �
� �

�
���������

The case ��� is a set of unbounded strips�(

�
�

)
�

(
�
�

)��
� �
� �

�
���������

it is equal to �(

�
�

)
�

(
�
�

)��
� �
� �

�
���������

too	 The example ��� corresponds to�(
�
�

)
�

(
�
�

)��
� �
� �

�
���������

The example ��� corresponds to one representative of example ��� and is the trapezoid con�
gruence �(


�

�

)
�

(
�
�

)��
� �
� �

�
���������

The example ��� to �(

�

�

)
�

(

�

�

)��
� �
� �

�
���������

and �nally the example ��� corresponds to a half plane�(
�

�

)
�

(
�
�

)��
� �
� �

�
���������
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Hence the trapezoid congruence model contains the most usually encountered patterns in the
�eld of matrix computation	

���� Equivalence of parametrical and equational trapezoid congruences� The
proof of the equivalence of the two de�nitions of trapezoid congruences �given in appendix D�
leads to an algorithm used implicitly in the following	 To take a parametrical trapezoid
congruence and to give the corresponding equational trapezoid congruence is no more di�cult
than solving a set of linear equations	 The other way is a bit more complicated� since �rst
the equations are solved and then their solution sets are intersected	 In fact� equation solving
and intersection of two solution sets are equivalent problems because solving an equation in
the solution set of the other gives the intersection of the two solution sets	 The solution of a
RLICE in Qn is a parametrical trapezoid congruence� hence a method to solve a RLICE in a
parametrical trapezoid congruence is only needed	
The latter problem is easily reduced to the particular case in which the parametrical trape�

zoid congruence is of orthonormal shape �the collection of vectors constituting the shape is
orthonormal�	 The resolution of a RLICE in a parametrical trapezoid congruence is used to
de�ne the abstract test with a RLICE condition	
The following theorem �proven in appendix D� holds�

Theorem �� �Trapezoid congruence representations equivalence�� The
equational and parametric de�nitions of trapezoid congruences are equivalent�

In the following� parametrical and equational trapezoid congruences are not di�erentiated� ex�
cept if one formalism is explicitly requested	 An example of the two equivalent representations
of a trapezoid congruence is given at the beginning of the section �	�	

���� Comparison� The partial order on TC is not expressible in terms of the order on
rational linear cosets� but is reduced by the following theorem to the comparison on interval
congruences	

Theorem �� �Characterization of the partial order on TC�� Given a trapezoid
congruence in parametrical form T�  �A�B� hSi�p�r�s�t� and another in equational form T�  

�*i�X � �ai� bi� hqii�i����m	� T� � T� if and only if for all i in ��� m�


�gi� di� heii �� �ai� bi� hqii

where

�gi� di�  *i�A�
p�r�s�tX

j��

*i�Sj � ��� cj� �
p�rX

j�p��

*i�Sj � �
����� �
p�r�s�tX

j�p�r�s��

*i�Sj � ������

ei  gcd �*i�S��*i�S�� � � � �*i�Sp�

Proof� T� � T� if and only if

*i��A� S�( � )�� � �ai� bi� hqii
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Figure V��� Di�erent kinds of trapezoid congruences of Q�	



�� V� DESIGN OF A RATIONAL RELATIONAL MODEL

for all i in ��� m�� � � ( � C and ) in ZpQrf�gsQt
�� which is equivalent to the condition

fi � �*i�S��x� � �*i�S��x� � � � �� �*i�Sp�xp � �ai� bi� hqii

for all fi � �gi� di� and xi �Z	 Now noticing that

h*i�S�i� h*i�S�i� � � �� h*i�Spi  heii

we see that it is equivalent to the interval congruence inclusion �guring in the theorem	

The comparison algorithm follows directly from this theorem	 For example the comparison�(

�
�

)
�

(
�


�

)�� ��
�

�
� 


�

�
���������

�

�(

�
�

)
�

(
�
�

)��
� �
� �

�
���������

where the right operand is equationally represented by the RLICE �x 
 y � �
��
�� h��i is
reduced to the comparison on IC�


��

�

�

�
h��i �� �
��
�� h��i

Proposition �� �Trapezoid congruences equal to Qn�� Let T  �A�B� hSi�p�r�s�t�
be a trapezoid congruence� T is equal to Qn if and only if�

p� r  n
A� S� � S� � � � �� Sp �

S
B

or equivalently� there exists an integer i � p such that ci � � 	with B 
 A  SC
�

Proof� Since S is a basis of Qn� we have p� r � s � t  n	
If s� t � � then T surely does not contain points P such that P �

Sp�r���n
A hence s� t  �	

The last point comes from the consideration of the de�nition ���� of parametrical trapezoid
congruences	

Notice that the equational representation allows a simpler characterization of trapezoid con�
gruences equal to Qn� the interval congruences of all the RLICEs of the system must be equal
to Z�and the interval congruence bounds well ordered�	 The characterization is preferably
done on the parametric representation in order to minimize the representation translations
during the analysis �most of the operators on trapezoid congruences use the parametric rep�
resentation�	

Proposition �� �Trapezoid congruences equal to ��� Let T  �A�B� hSi�p�r�s�t� be

a trapezoid congruence� T is equal to � if and only if

A ��
S

B

or equivalently� there exists an integer i such that ci 
 � 	with B 
A  SC
�



�� THE SET TC OF TRAPEZOID CONGRUENCES ON Qn ��

This is a direct consequence of the de�nition of the parametric trapezoid congruence	 The
equational way to say the same thing is to consider systems where at least one RLICE has
its representative lower bound greater than its upper bound �recall that all equations are
independent� hence no incompatibilities occur between RLICEs�	
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APPENDIX D

Representation translation algorithms

In order to prove the theorem ��� we are going to build two algorithms providing the trans�
lations between equational and parametric representations	 These algorithms are extensions
of Granger�s algorithms providing the equivalence between equational and parametric rep�
resentations of cosets of Qn	 Six preliminary lemmas are necessary� the two �rst providing
the solution set of a non zero and a zero modulo RLICE in a rational linear coset� the next
two the solution set of a non zero and a zero modulo RLICE in an orthonormal trapezoid
congruence�	 The next lemma reduces the determination of the solution set of a RLICE
in a trapezoid congruence to the determination of the solution set of another RLICE in an
orthonormal trapezoid congruence	 Finally the last lemma provides the translation from a
parametrical representation to an equational one	
Considering a linear congruence equation with several consecutive possible representatives�

it follows directly from proposition �� that the intersection of ZpQr with the solution set of
a non zero modulo RLICE is a parametric trapezoid congruence of integer rank p � � and
rational rank r 
 �	

Lemma �� �RLICE in ZpQr�� Let �p�� and q be non zero rational numbers� a and b be
�nite rational numbers� The solution set of the RLICE

��x� � ��x� � � � �� �p��xp�� � � � �� �p�rxp�r � �a� b� hqi

in �O�O� hIi�p�r����� with � � p � p� r
 � is the trapezoid congruence

T  

�
a

�p��

Ip���
b

�p��

Ip��

��
I� 


��

�p��

Ip��� � � � � Ip 

�p
�p��

Ip���
jqj

�p��

Ip���

Ip�� 

�p��

�p��

Ip��� � � � � Ip�r 

�p�r
�p��

Ip��

�
�p���r�������

The columns of the shape of T are linearly independent�

�An orthonormal element of TC has its lower bound equal to the null vector and an orthonormal
shape�

��



�� D� REPRESENTATION TRANSLATION ALGORITHMS

This lemma is generalized to RLICEs with one non zero coe�cient of rank greater than p��
and less than p� r by simply permuting the variables	
Now if the modulo of the RLICE is zero� the result is a trapezoid congruence of rational

rank r 
 � too� but of incremented bounded or unbounded rank �instead of integer rank as
for the preceding lemma� depending on the �nitness of the representative of the RLICE	

Lemma �� �Double linear inequation in ZpQr�� Let �p�r be a non zero rational num�
ber and a a �nite rational number� The solution set of the RLICE

a � ��x� � ��x� � � � �� �p�rxp�r � b

in �O�O� hIi�p�r����� with � � p � p� r
 � is the trapezoid congruence

T  

�
a

�p�r
Ip�r �

a� �b
 a�c

�p�r
Ip�r

� �
I� 


��

�p�r
Ip�r � � � � � Ip�r�� 


�p�r��

�p�r
Ip�r �

�

�p�r
Ip�r

�
�p�r���c���c�

where c is � when b is �nite and � otherwise� The columns of the shape of T are linearly
independent�

Proof� The same veri�cation as for Proposition �� is necessary and is done by noticing

that the di�erence there between the upper and lower bounds is b�a
jqj

�
jqj

�p��
Ip��

�
	 Hence the

upper bound is greater than the lower bound for the partial order relative to the shape of T
and the only points comprised between them are the ones corresponding to a solution of one
congruence equation of representative between a and b following Proposition ��	

Now a similar result is provided by the following lemma when the representative of the original
trapezoid congruence is of non null sizes �its lower and upper bounds are distinct�	

Lemma �� �Non zero modulo RLICE in a trapezoid congruence�� Let r be a pos�
itive integer� p� s� t three non negative integers such that p� r � s � t  n and a and b �nite
rational numbers� The solution of the RLICE

��x� � ��x� � � � �� �nxn � �a� b� hqi����

such that q�p�� � � and a�b is �nite� in the trapezoid congruence


�O� P � hIi�p�r�s�t�

is equal to the trapezoid congruence
+
, a

jqj
Sp�� �

pX
i��

piSi �
b

jqj
Sp�� �

nX
i�p�r��

Si

-
. hSi�p���r���s�t�
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Figure D��� Orthonormal trapezoid congruence and non zero modulo RLICE intersection	

where


Si  

���
��

jqj
�p��

Ip�� if i  p� �

Ii 

�i

�p��
Ip�� otherwise

Moreover� ���� ��� � � � � �n� is orthogonal to the rational rank columns of S�

Proof� Using the expression ���� of the parametric trapezoid congruence de�nition� the
trapezoid congruence provides

+  �O� P � hIi�p�r�s�t�  

���
��X � Qn


X  I�( � )��
) �ZpQrf�gsQt

��
O � ( � P

���
��

and noticing that the order � corresponds to the component wise order on vectors� + is equal

to �
���i�pi� i����p�r�s	

��� h�i�� � � �� ��p h�i��Q
r � f�p�r��g � � � �� f�p�r�sg �Q

t
�����

Now� in the RLICE ����� we make the unknown change and constant instantiation

�i � ��� p� xi  yi � �i
�i � �p� �� p� r� xi  yi
�i � �p� r � �� n� xi  �i

The �i are the constants considered in expression ���� and are arbitrary non negative rational
numbers when i � p� r � s	 Hence we get

���y� � ���� � � � �� �pyp � �p�p� � ��p��yp�� � � �� �p�ryp�r� �

��p�r���p�r�� � � � �� �n�n� � �a� b� hqi

and we are going to solve it parametrically with respect to its s � t last unknowns	 The
problem is now transformed into solving the RLICE

��y� � � � �� �pyp � �p��yp�� � � � �� �p�ryp�r � �a
 �� b
 �� hqi
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where �  
Pp

i�� �i�i �
Pn

i�p�r�� �i�i� in

Zp�Qr  �O�O� hIi�p�r�����

where I  I�p� r� �by applying the same translation to expression �����	 Lemma �� implies
that each parametric equation has the solution

	
BBB


y�
y�
			

yp�r

�
CCCA �

�
a
 �

�p��

Ip���
b
 �

�p��

Ip��

��
I� 


��

�p��

Ip��� � � � � Ip 

�p
�p��

Ip���
jqj

�p��

Ip���

Ip�� 

�p��

�p��

Ip��� � � � � Ip�r 

�p�r
�p��

Ip��

�
�p���r�������

Let us note Q� the modulo of this trapezoid congruence solution	 By applying the de�nition
expression ���� of parametric trapezoid congruences and expressing Ip�� in terms of Q

�
p��� we

get

	
BBB


y�
y�
			

yp�r

�
CCCA �

�
a��
jqj

Q�
p���

Q�
X�
Q�

b��
jqj

Q�
p��

X hQ�i�p���r���

Following the de�nition of the basis relative order� it is equivalent to

	
BBB


y�
y�
			

yp�r

�
CCCA �

�
a���b

� 
 �

jqj
Q�

p�� hQ
�i�p���r���

Then� introducing the s� t last parameters

	
BBBBBBBBB


y�
			

yp�r
�p�r��

			
�n

�
CCCCCCCCCA

�
�

a���b

(
� 
 �

jqj
Sp�� � �p�r��Ip�r�� � � � �� �nIn

)�
Sp�r

�
�p���r���

where Q� is transformed by adding s � t rows of zeros to get the p � r �rst columns of S	



D� REPRESENTATION TRANSLATION ALGORITHMS ��

Then the de�nition of � provides for the tuples t�y�� � � � � yp�r� �p�r��� � � � � �n� the expression

�
a���b

	
BBBB

� 


pX
i��

�i�i

jqj
Sp�� �

nX
i�p�r��

�i

(
Ii 


�i
�p��

Ip��

)
�
CCCCA

�
Sp�r

�
�p���r���

In terms of the initial variables t�x�� � � � � xp�r� xp�r��� � � � � xn� the parameterized solution set
is

�
a���b

	

 pX

i��

�i

(
Ii 


�i
�p��

Ip��

)
�

�

jqj
Sp�� �

nX
i�p�r��

�iSi

�
A�

Sp�r
�
�p���r���

and the solution set of all parametric equations is

�
a���b

���i�pi�i�p�r�s

���i�i�p�r�s

	

 pX

i��

�iSi �
�

jqj
Sp�� �

nX
i�p�r��

�iSi

�
A�

Sp�r
�
�p���r���

which is

�
a
jqj

Sp�� �
S

X �
S

P
p

i��
piSi� b

jqj
Sp���

P
p�r�s

i�p�r��
piSi

���i�i�p�r�s

	

X �

nX
i�p�r�s��

�iSi

�
A�

Sp�r
�
�p���r���

and �nally �
A �

S

X �
S

B

O �
Sp�r�s���n

Y

�X � Y �
�
Sp�r

�
�p���r���

The nullity of the dot product ���� ��� � � � � �n��Si for i � �p� �� p� r� is straightforward	

Geometrically� this lemma gives a method to calculate the intersection of a trapezoid con�
gruence �a set of regularly dispersed trapezoids with at least one unbounded side� with a set
of regularly dispersed sets of consecutive parallel hyperplanes �the solutions of the RLICE��
the result is a trapezoid congruence	 The same generalization as for lemma �� is possible	
For example the solution set of the RLICE x 
 �y �

�


� �

�
�

 
h�i in the parametric trapezoid

congruence
��

�
�

�
�
� �

�
�

� �
� �
� �

�
���������

is the trapezoid congruence
�� �

��
�

�
�
� �

�
��

� � � �
�
� �


�
���������

as is

illustrated on the �gure D	�	
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�

�

�

Figure D�
� Orthonormal trapezoid congruence and zero modulo RLICE intersection	

Lemma �� �Zero modulo RLICE in a trapezoid congruence�� Let p� s� t be non
negative integers� r a positive one such that p� r� s� t  n and a a �nite rational number�
The solution of the RLICE

a � ��x� � ��x� � � � �� �nxn � b����

such that �p�r � � and a is �nite in the trapezoid congruence


�O� P � hIi�p�r�s�t�

is equal to the trapezoid congruence
+
,aSp�r�s � pX

i��

piSi � pp�r�sSp�r �
p�r�s��X
i�p�r��

piSi � �a� c�b
 a��Sp�r�s

-
. hSi�p�r���s�c�t���c�

where


Si  

��������
�������

�
�p�r

Ip�r if i  p� r � s

Ip�r�s 

�p�r�s

�p�r
Ip�r if i  p� r 
 s � �

Ii 

�i

�p�r
Ip�r otherwise

and c is � when b is �nite and � otherwise� Moreover� ���� ��� � � � � �n� is orthogonal to the
rational rank columns of S�

Proof� Following the same way as for proving the lemma ��� the problem is transformed
into solving the RLICE

a 
 � � ��y� � � � �� �pyp � �p��yp�� � � � �� �p�ryp�r � b
 �����

where �  
Pp

i�� �i�i �
Pn

i�p�r�� �i�i� in

Zp�Qr  �O�O� hIi�p�r�����
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where I  I�p� r�	 Lemma �� implies that each parametric equation ���� has its solutions
t�y�� y�� � � � � yp�r� in�

a
�

�p�r
Ip�r �

a
�� �b
a�c

�p�r
Ip�r

� �
I�


��

�p�r
Ip�r � � � � � Ip�r��


�p�r��
�p�r

Ip�r �
�

�p�r
Ip�r

�
�p�r���c���c�

Let us note Q� the modulo of the trapezoid congruence solution	 By applying the de�nition
of parametric trapezoid congruences and expressing Ip�r in terms of Q

�
p�r � we get a �rst

expression corresponding to the case where b is in�nite	
BBB


y�
y�
			

yp�r

�
CCCA �

�
���

�
�a
 ��Q�

p�r � �Q�
p�r

�D
Q�p�r��

E
�p�r���

and a second expression corresponding to the case where b is �nite	
BBB


y�
y�
			

yp�r

�
CCCA �

�
a���b

�� 
 ��Q�
p�r

D
Q�p�r��

E
�p�r���

Both cases are expressed in	
BBB


y�
y�
			

yp�r

�
CCCA �

�
a���b

�� 
 ��Q�
p�r

D
Q�p�r��

E
�p�r���

Then introducing the s� t last parameters	
BBBBBBBBB


y�
			

yp�r
�p�r��

			
�n

�
CCCCCCCCCA

�
�

a���b

��� 
 ��Sp�r�s � �p�r��Ip�r�� � � � �� �nIn�
�
Sp�r��

�
�p�r���

where Q� is transformed by adding s � t rows of zeros getting the corresponding columns of
S	 Then the decomposition of � provides for the set of tuples t�y�� � � � � yp�r� �p�r��� � � � � �n�
the expression

�
a���b

	

/

� 

pX

i��

�i�i

0
Sp�r�s �

nX
i�p�r��

�i

(
Ii 


�i
�p�r

Ip�r

)�
A�

Sp�r��
�
�p�r���
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In terms of the initial variables t�x�� � � � � xp�r� xp�r��� � � � � xn� the parameterized solution set
is

�
a���b

	

 pX

i��

�i

(
Ii 


�i
�p�r

Ip�r

)
� �p�r�sSp�r �

p�r�s��X
i�p�r��

�iSi � �Sp�r�s

�
nX

i�p�r�s��

�iSi

�
A�

Sp�r��
�
�p�r���

and the solution set of all parametric equations is

�
a���b

���i�pi�i�p�r�s
���i�i�p�r�s

	

 pX

i��

�iSi � �p�r�sSp�r �
p�r�s��X
i�p�r��

�iSi � �Sp�r�s

�
nX

i�p�r�s��

�iSi

�
A�

Sp�r��
�
�p�r���

which is

�
aSp�r�s�

S

X�
S

aSp�r�s�c�b�a�Sp�r�s�T

���� ���i�i�p�r�s

	

X � ��
 c��Sp�r�s �

nX
i�p�r�s��

�iSi

�
A�

Sp�r��
�
�p�r���

where T  
Pp

i�� piSi � pp�r�sSp�r �
Pp�r�s��

i�p�r�� piSi� and �nally

�
A�
S

X�
S

B

O �
Sp�r�s�c�n

Y

�X � Y �
�
Sp�r��

�
�p�r���

The nullity of the dot product ���� ��� � � � � �n��Si for i � �p��� p�r
�� is straightforward	

Geometrically� this lemma has the same interpretation as the preceding one except that the
set of regularly dispersed sets of consecutive parallel hyperplanes is changed into only one
set of consecutive parallel hyperplanes �the solutions of the RLICE�	 The same generalization
as for Lemma �� is possible	 For example the solution set of the zero modulo RLICE x 

�y �

�


�
� �
�

 
h�i in the parametric trapezoid congruence

��
�
�

�
�
� �

�
�

� �
� �
� �

�
���������

is the trapezoid

congruence
�� �

��
�

�
�
� �

�
��

� � � �
�
� �


�
���������

as is illustrated on the �gure D	�	

The problem of solving a RLICE in a trapezoid congruence is now reduced to the resolution
of an equivalent equation in an orthonormal trapezoid congruence	
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Lemma �� �RLICE in a trapezoid congruence�� Let p� s� t be non negative integers�
r a positive one� a a �nite rational number and b a �nite rational number if q is not zero�
The solution of the RLICE

��x� � ��x� � � � �� �nxn � �a� b� hqi

in the parametric trapezoid congruence

�A�B� hSi�p�r�s�t�

such that there exists an integer j � �p � �� p � r� verifying ���� ��� � � � � �n��Sj � �� is the
trapezoid congruence

�A� SA�� A� SB�� hSS�i�p��r��s��t��

where �A�� B�� hS�i�p��r��s��t�� is the solution set of the RLICE

���� ��� � � � � �n�S

	
BBB


y�
y�
���

yp�r�s�t

�
CCCA � �a
���� ��� � � � � �n�A� b
���� ��� � � � � �n�A� hqi

in the orthonormal trapezoid congruence


�O�C� hIi�p�r�s�t�

with B 
 A  SC�
Moreover� ���� ��� � � � � �n� is orthogonal to the rational rank columns of SS��

Proof� X  t�x�� x�� � � � � xn� is in S is equivalent to�������
������

��x� � ��x� � � � �� �nxn � �a� b� hqi
X  A � S�( � )�
B 
 A  SC
) �Zp�Qr � f�gs �Qt

�

O � ( � C

If we note *  ���� ��� � � � � �n�� we get a new equivalent system in terms of the unknown Y

���������
��������

Y  ( � )
*SY � �a
 *A� b
 *A� hqi
X  A � SY
) �Zp�Qr � f�gs �Qt

�

B 
 A  SC
O � ( � C
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which is equivalent to

�����
����

Y � �O�C� hIi�p�r�s�t�
SC  B 
 A
*SY � �a
 *A� b
 *A� hqi

X  A � SY

If r � � and at least one component of the vector *S of rank greater than r and smaller than
r � s is not null� then lemmas �� and �� provide the solution set �A�� B�� hS�i�p��r��s��t�� for Y
and a new equivalent system is provided by

�������
������

X  A � SY
Y  A� � S��(� �)��
B� 
 A�  S�C�

)� �Zp� �Qr� � f�gs
�

�Qt�

O � (� � C�

Hence

�����
����

X  �A� SA�� � SS��(� �)��
S�B� 
 A��  �SS��C�

)� �Zp� �Qr� � f�gs
�

�Qt�

O � (� � C�

which is the trapezoid congruence �A� SA�� A� SB�� hSS�i�p��r��s��t��	

The nullity of the dot product ���� ��� � � � � �n���SS��i for a column of rational rank �SS ��i is
equivalent to the one of ����� ��� � � � � �n�S��S�i �because p� r� s� t  p�� r�� s�� t�� which
is implied by lemmas �� and ��	

Lemma �� �Conversion to a RLICE system�� Let T  �A�B� hSi�p�r�s�t� be a paramet�

ric trapezoid congruence� R a �p� r� s� t� n� rational matrix such that RS  I� Then T is
equal to the equational trapezoid congruence de�ned by the RLICE system with the unknowns
X  t�x�� x�� � � � � xn�������

�����

�tR�i �X � ��tR�i �A� �
tR�i �B� h�i if i � ��� p�

�tR�
i
�A � �tR�

i
�X � �tR�

i
�B if i � �p� r� �� p� r � s�

�tR�
i
�A � �tR�

i
�X if i � �p� r� s� �� p� r � s � t�

Proof� R exists since the elements of the collection �Si�i����p�r�s�t	 are linearly indepen�
dent� thus the RLICE system is non singular	
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The elements X of T are de�ned by the system�����
����

X  A � S�( � )�
B 
A  SC
) �Zp�Qr � f�gs �Qt

�

O � ( � C

which is equivalent to �����
����

RX  RA� �( � )�
R�B 
 A�  C
) �Zp�Qr � f�gs �Qt

�

O � ( � C

The p �rst rows of RX  RA � �( � )� provide the RLICEs with modulo one� the r next
rows are simply ignored because of their rational component of )� the next s rows provide
the double inequations and �nally the t last rows� the inequalities	

For example� the trapezoid congruence
�� �

��
�

�
�
� �

�
��

� � � �
�
 �

�

�
���������

is equivalent to the RLICE
system �

�


x
 �



y �

�
�
�
� �
��

 
h�i

x �
�
�� �

�

 
h�i

Finally we are now able to prove the theorem ��	

Proof� �of the equivalence of parametric and equational representations� Lemma �� pro�
vides the equational trapezoid congruence equal to a given parametric trapezoid congruence	
For the other way� let us take a non singular RLICE system

,  

	
BBB
*i�

	
BBB


x�
x�
			
xn

�
CCCA � �ai� bi� hqii

�
CCCA

i����n	

We suppose that all the lower bounds of the interval congruences of the system are �nite and
that if their modulo is non zero that their upper bounds are �nite too	 Indeed� if it is not the
case� equivalent systems verifying these conditions are easily determined	 The RLICEs with
an interval congruence of in�nite lower and upper bounds are just removed and those which
have only one in�nite bound are also removed if the corresponding modulo is non zero and
the RLICEs are inversed otherwise	 The parametric corresponding trapezoid congruence is
obtained by an incremental resolution of , in Qn	 Lemma �� solves the �rst RLICE

,�  *��

	
BBB


x�
x�
			
xn

�
CCCA � �a�� b�� hq�i
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in Qn  �O�O� hIi���n������ giving the parametric trapezoid congruence T� whose rational rank
is greater than n 
 � and whose rational rank columns are orthogonal to *�	 *� and *� are
linearly independent� hence *� is not orthogonal to the rational rank columns of T� and the
RLICE ,� is solvable in T� by lemma ��	 After n
 � iterations of this process� the obtained
parametric trapezoid congruence Tn is the parametric representation of the system ,	 The
equivalence between parametric and equational trapezoid congruences is thus proved	



CHAPTER VI

ABSTRACT INTERPRETATION OF TRAPEZOID CONGRUENCES

This chapter is devoted to the design of some abstract interpretations using the two domains
described in the chapter V	 First the connection between these two domains is provided in
section �� its particular features are expressed in terms of the general abstract interpretation
framework �CC��b�	 Then the approximate operators on the abstract domain are determined
together with the widening operator in the section �	 Finally� the section � provides the
abstract statements and is ended with a complete analysis example	

�� Semantic operators

The concrete domain RCC and the abstract one TC �with two dual de�nitions� are designed
in chapter V	 We bind them now using a pair of abstraction and concretization functions in
order to give the meaning of the abstract elements and to prove that their respective orders
are coherent	

���� Soundness relation�

Definition �� �The soundness relation ��� The soundness relation � on P�Zn��TC
is de�ned by

�
def
 f�P� T � � P � Tg

���� Abstraction� To abstract a relational coset congruence is to �nd a rational superset
of it	 To be as accurate as possible the abstraction should not add any new integer solution
to the original system	

Definition �� �Abstraction ����� The abstraction function is de�ned by�

��� � RCC � TC
�'i�X � �i� �li� ui� hmii�i����p	 �� �'i�X � � ��i� �li� ui� hmii��i����p	

where the abstraction function � over coset congruences is given in de�nition ��	

���
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Figure VI���� The abstraction of the relational coset congruence of the �gure V	�	

Notice that an abstraction relation � only requiring that � ��i� �li� ui� hmii � �ai� bi� hqii� �
�i� �li� ui� hmii  �ai� bi� hqii �Zwould have been su�cient but has not been chosen for the
sake of simplicity	
For example� the abstraction �����x 
 �y � �� ��� �� h�i�� of the relational coset congruence

C� of the �gure V	� is the trapezoid congruence �x
 �y � ��� �� h�i� which is represented on
Figure VI	��	

���� Concretization� The concretization function 	�� is �rst de�ned on a subset of TC
that is the trapezoid congruences equationaly de�ned with integer coe�cients	 It is then
implicitly extended to TC since every element of TC is equivalent to an element de�ned using
integer coe�cients	 Such RLICEs de�ning equational trapezoid congruences are obtained by
multiplying their coe�cients with the least common multiple of their denominators	 Hence
the functional property feature of the concretization function is preserved by that preliminary
multiplication	

Definition �� �Concretization 	���� The concretization function 	�� associates to the
trapezoid congruence T  �'i�X � �ai� bi� hqii�i����p	 the relational coset congruence

	���T �  

	

 �

gi
'i�X �

��
��� ��� �� h�i if

l
li
gi

m
�

j
ui
gi

k
111�i� hl li

gi

m
�
j
ui
gi

ki D
mi

gi

E111 otherwise

�
A

i����p	

where �'i�i����p	 is a collection of integer tuples of Z
n� gi  gcd�'i� mi� and �i� �li� ui� hmii  

	 ��ai� bi� hqii�	

The preceding de�nition holds because the resulting system of congruence equations always is
a RCC �the coset congruences of the LCCEs are normalized and the linear coe�cients of each
LCCE are prime with the corresponding coset congruence modulo�	 Indeed� the modulos of
a coset congruence and of its normalization have di�erent absolute values if and only if they

are equal to the empty set or to Z	 It is easy to see that �i�
hl

li
gi

m
�
j
ui
gi

ki D
mi

gi

E
equals Zif and
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only if �i� �li� ui� hmii is equal to Ztoo� and� in this case� they both are �� ��� �� h�i	 Finally

notice that �i�
hl

li
gi

m
�
j
ui
gi

ki D
mi

gi

E
is never empty because

l
li
gi

m
�

j
ui
gi

k
� hence the gcd of the

linear coe�cients of the LCCE and of their modulo always is �	 The coset congruences of the
LCCEs are normalized	

Theorem �� �Correctness of 	���� The meaning 	���T � of a trapezoid congruence T is
its intersection with Zn�

Proof� Each constitutive RLICE of the trapezoid congruence �'i�X � �ai� bi� hqii�i����p	
corresponds to the system of linear congruence equations�

ai�x��bi

'i�X � x� mod �qi�

and� if �i� �li� ui� hmii  	 ��ai� bi� hqii�� then the integer solution set of this system is equal to
the one of the system with integer unknowns�

li�k�ui

'i�X � k�i mod �mi�����

because the linear coe�cients are integers and
�S

ai�x��bi
x� hqii

�
� Z 

S
li�k�ui

k�i hmii	

Moreover it is equal to the solution set of the system provided by only keeping in the disjunc�
tion system ���� the linear congruence equations with solutions	 If gi  gcd�'i� mi�� these
ones are characterized by k�i � hgii	 The lemma �� provides the result	

In addition to the preceding concretization algorithm� �rst if the coset congruence of an
obtained LCCE is empty then the other LCCEs are removed and� �nally� the LCCEs whose
coset congruences are equal to Zare removed	 Hence the resulting trapezoid congruence
meaning has the property that� excepting the case where it is equal to one LCCE with an
empty coset congruence� all its constitutive linear congruence equation solution sets are non
empty	
For example the meaning of the trapezoid congruence(

�x� ��y �

�
�

�
�
�

�

��
��

�

�
� �x
 �y �

�
�

�
�
�

�

��
�

�

�)

is empty since 	
��

�
�
� �



 �
��
�

��
 �� ��� �� h��i� gcd ��� ��� ���  � and

2
�



3
�

4
�



5
while the

meaning of the trapezoid congruence(
x
 �y �

�
�

�
�
��

�

�
h�i � �x
 �y �

�
�

�
�
�

�

��
�

�

�)
is the relational coset congruence

�x
 �y � �� ��� �� h�i�

�It is a direct consequence of the proof of the theorem on the correctness of ����
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Indeed� 	
��

�
�
� �
�

 �


�

��
 �� ��� �� h�i and

11�� �2�



3
�
4
�



5 �





�11  �� ��� �� h�i  Z� hence the RLICE
�x
�y �

�
�
�
� �
�

 �


�

�
is redundant	 Finally the resulting relational coset congruence corresponds

to the cosets
�
�
�

��
� �
� 


�
�����

and
�


�

��
� �
� 


�
�����

represented on Figure V	�	

���� Characteristics of the connection ����� 	���� When the meaning of T is not empty�

each equation of 	���T � is a disjunction of
j
ui
gi

k



l
li
gi

m
�which is possibly in�nite� rational

linear congruence equations� hence 	���T � is the disjunction of(#
u�
g�

$



!
l�
g�

")(#
u�
g�

$



!
l�
g�

")
� � �

(#
up
gp

$



!
lp
gp

")
rational linear congruence equation systems	 Following �Gra��a�� we see that all the above
mentioned systems have the same kind of solution A hMi�p��� where hMi�p��� is the solution
set of the congruence equation system

�'i�X � � mod �mi��i����p	

Hence S is a set of linear cosets of modulo hMi�p���	

Proposition �� �Characterization of 	�� �Zn��� Let �'i�X � �ai� bi� hqii�i����p	 be a

trapezoid congruence� it contains Zn if and only if for all i � ��� p�

� 


6666mi

gi

6666 �
#
ui
gi

$



!
li
gi

"
� �

where �i� �li� ui� hmii  	 ��ai� bi� hqii�

Proof� This is a direct consequence of the propositions �� and �� where the cases corre�
sponding to a zero modulo do not have to be considered because of the special kind of interval
congruences used in the de�nition �� of trapezoid congruences	

Proposition �� �Structure of ����� 	����� The pair of maps ����� 	��� is not a Galois
connection�

Proof� Since the relational abstraction ��� and the relational concretization 	�� partially
coincide respectively with the non relational abstraction � and concretization 	 when they
are considered in one dimension� the counter example justifying the proposition �� is used to
prove the above proposition	
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���� Normalization� Intuitively� the normalization process corresponds here� given a
parametric trapezoid congruence T � to �nd a new trapezoid congruence T � with the same
modulo and such that its representative is the smallest one preserving the meaning of T
�T �Zn  T ��Zn�	 A simple idea consists in reducing as much as possible the representative
width of each equational trapezoid congruence constitutive RLICE	 This is done by following
the property stating that

��x� � ��x� � � � �� �nxn � a mod �q�

has integer solution if and only if gcd ���� ��� � � � � �n� q� divides a	 This solves well our nor�
malization problem when the equational trapezoid congruence consists in only one RLICE�
but not more	 Indeed� the integer solutions of one RLICE preventing the reduction of its
representative may not be solutions of another RLICE of the considered trapezoid congru�
ence	 Hence the representative reduction can go further without changing the meaning of
the initial trapezoid congruence	 We are not able for the moment to provide a normalization
algorithm satisfying our initial intuitive idea� but only a partial normalization involving the
abstraction and concretization function	 Such a construction which is in fact equivalent to
the one described above �reducing the RLICE representatives� allows to take advantage of
the possible improvements of the concretization process for special cases	

Definition �� �Normalization ����� The normalization operator ��� on the set of trape�
zoid congruences of Qn is de�ned by

���
def
 ��� 	 	��

As for the non relational normalization operator � on interval congruences� ��� generally re�
places a trapezoid congruence with a non comparable one	 This is a consequence of the non
reductive normalization k k on CC involved in the concretization 	 of interval congruences� it�
self involved in the concretization of trapezoid congruences 	��	 Hence a normalized trapezoid
congruence is possibly smaller and has the same meaning as the initial one	
For example the trapezoid congruence(

x
 �y �

�
�

�
�
�

�

��
�

�

�
� �x
 �y �

�
��

�
� ��

�
h��i

)
is normalized into (

x
 �y �

�
�

�
�
�

�

��
�

�

�
� �x
 �y � ��� ���h��i

)
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�� Abstract operators

The goal of this section is to deal with the operators on the abstract domain that are needed
for the analysis	 Exact meet and join algorithms are not de�nable since TC is not a complete
lattice� hence only safe approximations of them are de�ned	

���� Conversion� As illustrated in the de�nition of the approximate join operator� the
only really needed conversion consists in �nding an approximation of the smallest trapezoid
congruence of TC containing a given trapezoid congruence when the new modulo divides the
one of the original trapezoid congruence	

Lemma ��� Let hSi�p�r�s�t� be a trapezoid congruence and hQi�p��r�� a divisor of hSp�ri�p�r��

There exists a shape hS�i�p��r��s��t�� such that S�p
��r�  Q and S  S�P where P has the pattern

p p�r p�r�s p�r�s�t

� � � �

P  

	
BB


E �

�
�
F

�
CCA

! p�

! p��r�

! p��r��s�

! p��r��s��t�

����

where E is a �p�� p� block of integer coe�cients and � denotes a block of zero coe�cients�

Proof� The p � r �rst columns of P are just a consequence of the proposition ��	 Then
it is su�cient to complete the s� � t� columns of S� by taking linearly independent vectors of
Sp�r���p�r�s�t 	 It is possible to choose s� in order to maximize the height of the block of zero
coe�cients above F 	

Definition �� �Shape conversion Cast�� Let T  �A�B� hSi�p�r�s�t� be a trapezoid con�

gruence and hS�i�p��r��s��t�� a shape such that
D
S�

p��r�
E
�p��r��

is a divisor of hSp�ri�p�r� and

S  S�P where P has the pattern ���� and in addition the coe�cients of the block F are
positive	 The cast of T to the shape hS�i�p��r��s��t�� is de�ned by

CasthS�i�p��r��s��t�	
�T �

def
 �A � S�G�A� S�D� hS�i�p��r��s��t��

where C is such that SC  B 
A and G and D are rational �p�� r�� s� � t��uples such that

�gj� dj�
def
 

���������
��������

p�r�sX
i��

pji � ��� ci� �
p�r�s�tX

i�p�r�s��

pji � ������ if � � j � p�

��� �� if � � j 
 p� � r�

p�r�sX
i�p�r��

pji � ��� ci� if � � j 
 p� 
 r� � s� � t�
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Figure VI���� Trapezoid congruence conversion	

where p � ������  ��� �� by convention if p � �	

Proposition �� �Extensivity of Cast�� Let T  �A�B� hSi�p�r�s�t� be a trapezoid con�

gruence and hS�i�p��r��s��t�� a shape such that CasthS�i�p��r��s��t�	
�T � exists� then

T � CasthS�i�p��r��s��t�	
�T �

The proof is just a veri�cation	 The cast operation is illustrated on �gure VI	�� where

Cast�� �
� �

�
��������	

���
�

�

�
�
�
�
�

� �
� �
� �

�
���������

�
 

��
��
�


�
�
�



��

� �
� �
� �

�
���������

Unfortunately� the cast of T to a shape hS�i�p��r��s��t�� whose modulo divides the one of T
is not always possible	 The t last vectors of the shape of T have to be linear combinations
of the columns of S but with positive coe�cients relatively to the t� last columns of S�	 If
it is not the case� a new shape for which the shape cast is possible is easily provided by an
extension of the linear part of the modulo of the shape hS�i�p��r��s��t��	 Indeed� adding to the

linear part of hS �i�p��r��s��t�� the vectors of its t
� last columns corresponding to the rows of the

block F containing negative coe�cients provides a divisor of the modulo of hS�i�p��r��s��t�� and

of the modulo of hSi�p�r�s�t� too	 Hence� given a divisor Q of the modulo of hSi�p�r�s�t� it is
always possible to �nd a divisor Q� of Q with the same non linear part dividing the modulo
of hSi�p�r�s�t� and allowing the shape cast of T to a shape of modulo Q

�	
The following de�nition is a generalization of the greatest common divisor on linear sub�

groups to trapezoid congruence shapes	
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Theorem � Definition �� �Shape join
V
�� Let hS�i�p��r��s��t�� and hS�i�p��r� �s��t�� be two

shapes� There exists a shape hSi�p�r�s�t� such that its modulo hSp�ri�p�r� divides and has

the same non linear part as the greatest common divisor of the modulos
D
Sp��r�
�

E
�p��r��

andD
Sp��r�
�

E
�p��r��

� and such that the casts of trapezoid congruences of shapes hS�i�p��r��s��t�� and

hS�i�p��r��s��t�� to the shape hSi�p�r�s�t� exist� hSi�p�r�s�t� is noted

hS�i�p��r��s��t��
7

hS�i�p��r��s��t��

Proof� It is su�cient to build the linear part of the shape join such that it generates the
t� last columns of the �rst shape and the t� last columns of the second	 Then the shape cast
is always possible	

The shape cast and shape join are the basic steps of the general algorithm taking two
trapezoid congruences T�  �A�� B�� hS�i�p��r��s��t�� and T�  �A�� B�� hS�i�p��r��s��t�� and deter�

mining two new trapezoid congruences T �
�  �A

�
�� B

�
�� hSi�p�r�s�t� and T

�
�  �A

�
�� B

�
�� hSi�p�r�s�t� of

identical shape and respectively containing T� and T� where

hSi�p�r�s�t�  hS�i�p��r��s��t��
7

hS�i�p��r��s��t��

T �
�  CasthSi�p�r�s�t	�T��

T �
�  CasthSi�p�r�s�t	�T��

���� Join� The approximate join operator over trapezoid congruences is based on the use
of two elementary join operators which are homothetic and congruence�like join	 These two
basic operators both take trapezoid congruences with the same shape and di�erent represen�
tatives	 Hence a conversion of the two operands of a join operation to the same shape is
necessary before running these operators	 This conversion process is provided by the shape
cast and shape join	 The new common shape is based on the greatest common divisor of the
two original trapezoid congruences modulos	

Homothetic join on TC
The next de�nition establishes how to join two trapezoid congruences with the same shape	
More precisely� it gives one possible trapezoid congruence containing two trapezoid congru�
ences of same modulo	
Recall that lemma �� states that the conversion of two parametrical trapezoid congruences

with the same shape to their equational representation are equational trapezoid congruences
with identical associated homogeneous equation systems	

Definition �� �Homothetic join t��� Let T�  �*i�X � �a�i� b�i� hqii�i����n	 and T�  

�*i�X � �a�i� b�i� hqii�i����n	 be two prime equational trapezoid congruences with the same
associated parametric shape	

T� t� T�
def
 �*i�X � �a�i� b�i� hqii t �a�i� b�i� hqii�i����n	
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Figure VI���� Homothetic join t�	

Proposition ��� �t� is greater than ��� Let T� and T� be two trapezoid congruences

T� � T� � T� t� T�

The proof is just a veri�cation	

The basic idea resulting from the de�nition of that join operator is illustrated on �gure VI	��
with an example where�(


�

�

)
�

(
�

�

)��
� �
� �

�
���������

t�

�(
�

�

)
�

(
�
�

)��
� �
� �

�
���������

is equal to �(

�

�

)
�

(
�
�

)�� �
� �
� �

�
���������

Congruence
like join on TC

An alternative to the homothetic join t� naturally de�ned for two trapezoid congruences of
same modulo is the congruence join t
 that �rst converts them to a divisor of their common
shape following the de�nition �� and then makes an homothetic join	 The new modulo is
chosen such that the converted representatives overlap	
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Figure VI���� Congruence�like join t
	

Definition ��� �Congruence�like join t
�� Let T�  �A�� B�� hSi�p�r�s�t� and T�  

�A�� B�� hSi�p�r�s�t� be two non comparable trapezoid congruences with the same shape	 The
congruence�like join T� t
 T� of T� and T� is de�ned by

T� t
 T�
def
 CasthS�i�p�	r

�s�t��T�� t� CasthS�i�p��r��s��t�	
�T��

where

+  A� 
 A� �
�

�

	

 pX

i��

�c�i 
 c�i�Si �
p�r�sX

i�p�r��

�c�i 
 c�i�Si

�
A

hQi�u�v�
def
 gcd �

�
Sp�r�

�p�r�
� h+i������

hS�i�p��r��s��t��  hQi�u�v�����
7

hSi�p�r�s�t�

Notice that this de�nition implies that
D
S�

p��r�
E
�p��r��

divides hQi�u�v� and the shape conversion

of T� and T� to the shape
D
S�

p��r�
E
�p��

r� exists	

Proposition ��� �t
 is greater than ��� Let T� and T� be two trapezoid congruences

T� � T� � T� t
 T�
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Proof� It is a direct consequence of the extensivity of Cast and of the proposition ���	

The example of �gure VI	�� illustrates the congruence�like join	�( �
�

�

)
�

( �
�

�

)��
� �
� �

�
���������

t


�( ��
�


�

)
�

( ��
�


�

)��
� �
� �

�
���������

is equal to �( ��
�


�

)
�

( ��
�


�

)��
� �
� �

�
���������

The problem raised with the congruence�like join is that if + is taken exactly as indicated in
the de�nition� the resulting gcd will be a very large linear subgroup� the simple and e�ective
solution consists in approximating + with a vector the projections of which on SpQp have
inverse integer coordinates with respect to Sp	

Definition ��� �Choice ����� Given two trapezoid congruences T� and T�� the result
T� ��� T� of the choice between T� and T� is the one having the smallest value by ��� 	 	��	

Approximate least upper bound

An approximation of the exact least upper bound operator is de�ned in terms of the homo�
thetic join and of the congruence�like join	

Definition ��� �Approximate join t���� Let T�  �A�� B�� hS�i�p��r� �s��t�� and T�  

�A�� B�� hS�i�p��r��s��t�� be to trapezoid congruences	 Their approximate join T� t
�� T� is equal

to ��
�

T� if T� � T�

else T� if T� � T�

else �T �
� t� T

�
�� �

�� �T �
� t
 T �

��

where hSi�p�r�s�t�  hS�i�p��r��s��t��
V
hS�i�p��r��s��t��� T

�
�  CasthSi�p�r�s�t	�T�� and

T �
�  CasthSi�p�r�s�t	�T��	

���� Intersection� Since no shape meet algorithm is provided because only very approxi�
mate ones have been considered� only special cases of trapezoid congruences intersection are
dealt with	 Other cases are approximated either by one of their operands or by building an
equational trapezoid congruence from the lists of RLICEs constituting both of the operand
equational representations	

Homothetic meet on TC

The next de�nition provides an approximation of the intersection of two trapezoid congruences
with the same shape	
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Figure VI���� Homothetic meet u�

Definition ��� �Homothetic meet u��� Let T�  �*i�X � �a�i� b�i� hqii�i����n	 and T�  

�*i�X � �a�i� b�i� hqii�i����n	 be two prime equational trapezoid congruences with the same
associated parametric shape	

T� u� T�
def
 �*i�X � �a�i� b�i� hqii u �a�i� b�i� hqii�i����n	

Moreover the cases where at least one of the intersections on interval congruences of the
preceding de�nition provides the empty interval congruence derive from an empty exact ho�
mothetic meet of trapezoid congruences	

Proposition ��� �u� safely approximates ��� Let T� and T� be two trapezoid congru�
ences

T� � T� � T� u� T�

The proof is exactly the same as for the proposition ���	
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The example of the �gure VI	�� corresponds to�(

�

�

)
�

(
�

�

)��
� �
� �

�
���������

u�

�(
�

�

)
�

(
�
�

)��
� �
� �

�
���������

which is equal to �( �
�

�

)
�

(
�
�

)�� �
�
�

� �

�
���������

���� Widening� Two alternatives named congruence�like and interval�like widening are
taken under consideration	 They derive respectively of classical widenings on relational con�
gruences and intervals	 Let us explicate them separately on comparable trapezoid congruences
T� � T� �rst before combining them in order to design a widening operator suitable for trape�
zoid congruences	
The transposition of Granger�s widening on linear rational cosets to trapezoid congruences

works as follows� take two comparable trapezoid congruences T�  �A�� B�� hS�i�p�r����� and

T�  �A�� B�� hS�i�p�r����� having the same modulo linear part but possibly di�erent modulo
non�linear part� choose a direction vector E not generated by the linear common part of the
modulo and �nd the smallest trapezoid congruence containing T� whose modulo linear part
has been increased with E	 Of course the choice of E is important and take T� into account
in the sense that the density of points along the direction E must have increased between T�

and T�	 In order to adapt this alternative to trapezoid congruences we can consider trapezoid
congruences with identical modulos and simply take a vector of the modulo non�linear part
and put it in the new modulo linear part	 What is adopted is not so coarse but take the
vectors of the modulo non�linear part along which the representative has increased from T�

to T� and strictly increases the projection of the representative on them	
Now an adaptation of Cousot�s widening on intervals is done by considering two comparable

trapezoid congruences T�  �A�� B�� hSi�����s�t� and T�  �A�� B�� hSi�����s�t�	 The common
vectors of the bounded part of the shape along which the representative has increased between
T� and T� are placed in the unbounded part of the shape and the vectors of the unbounded
part of the shape along which the representative has increased between T� and T� are placed
in the linear part of the modulo	
Now we combine these two features simply using the widening operator on interval con�

gruences	

Definition ��� �Equational widening r��� Let T�  �*i�X � �a�i� b�i� hqii�i����n	 and

T�  �*i�X � �a�i� b�i� hqii�i����n	 be two prime equational trapezoid congruences with the
same associated parametric shape	 Their equational widening T�r�T� is de�ned by

T�r�T�
def
 �*i�X � ��a�i� b�i� hqiir �a�i� b�i� hqii��i����n	

where r is the widening on interval congruences	

The result of the equational widening is an equational trapezoid congruence	 Since the equa�
tional widening is parameterized by the widening on non relational interval congruence� other



��� VI� ABSTRACT INTERPRETATION OF TRAPEZOID CONGRUENCES

�

�

��
��

��
���

��
��

��
���

�
�� �

��

��
�

��
� �

�� �
��

��
�

��
�

r�� �

�

��
��

��
���

��
��

��
���

�
�
�
�
��

�
�
�
�
��

��
��

��
��

�
�
�
�
��

�
�
�
�
��

��
��

��
��

 �

�

��
��

��
���

��
��

��
���

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

Figure VI��	� Relational widening r��	

operators are obtained by choosing any possible widening on IC� see the section �	� for such
suggestions	

Definition ��� �Relational widening r���� Let T�  �A�� B�� hS�i�p��r��s��t�� and T�  

�A�� B�� hS�i�p��r��s��t�� be two trapezoid congruences	 Their widening T�r
��T� is de�ned by

T�r
��T�

def
 CasthSi�p�r�s�t	�T��r�CasthSi�p�r�s�t	�T��

where hSi�p�r�s�t�  hS�i�p��r��s��t��
V
hS�i�p��r��s��t��	

The operator r�� is always de�ned	 Indeed following lemma ��� two parametrical trapezoid
congruences with the same shape are converted to equational forms of identical associated
homogeneous systems	 Those equational trapezoid congruences are then transformed into
prime ones preserving the equality of their homogeneous part and the equational widening is
possible	
The correctness of the relational widening operator de�nition results from the fact that

��� r�� is greater than the join operator� it is a consequence of the extensivity of Cast
and of r�	

��� the application of r� to a set of trapezoid congruences with the same shape is station�
ary after a �nite number of steps �as a consequence of the similar property of r on
sets of interval congruences�	 The application of r�� to a set of trapezoid congruences
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is equivalent to its application to an increasing chain because of the use of the Cast
operator in r��	 Finally the convergence property of r� leads to the convergence of
r��	

An example of widening is provided on �gure VI	�� where the widening

�x
 y � ��� �� h�i
x
 �y � ��� �� h�i

*
r��



�x
 y � ��� ��� h�i
x
 �y � �
�� �� h�i

is in fact an equational widening and gives

�x
 y � ��� ���h�i
x
 �y � �
�� �� h�i
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�� Abstract primitives

���� A�ne assignment� An assignment of an a�ne expression to an integer variable is
an a�ne transformation	

Definition ��� �Abstract affine assignment Assign�� Let F be an a�ne transfor�
mation on Zn and u its linear part	 The abstract application Assign�F� T � of F to the
trapezoid congruence T  �A�B� hSi�p�r�s�t� is the trapezoid congruence de�ned by8

F �A� �
p�r�s�tX

i��

Ai� F �A� �
p�r�s�tX

i��

Bi

9
hS�i�p��r��s��t��

where

hS�i�p��r��s��t��  
p�r�s�t7

i��

hu�Si�i�������������

and

�Ai� Bi� hS
�i�p��r��s��t��  CasthS�i�p��r��s��t�	

�
�O� ciu�Si�� hu�Si�i�������������

�
and B 
A  SC� �� is � if � � i � p� � otherwise� �� is � if � � i
 p � r� � otherwise� �
 is �
if � � i
 p
 r � s� � otherwise� �� is � if � � i
 p
 r 
 s � t� � otherwise	

This abstract a�ne assignment is not exact in general because the a�ne transformation of
a trapezoid is not in general a trapezoid and hence has to be approximated with an em�
bedding trapezoid	 Intuitively� the abstract a�ne assignment proceeds as following� �rst an
approximate shape hS�i�p��r��s��t�� of the result is determined and then the original trapezoid
congruence is decomposed as the sum of trapezoid congruences with a one column shape
�O� ciSi� hSii������������� and abstract assigned separately giving �O� ciu�Si�� hu�Si�i��������������
at the end the result is obtained by making the sum of all their conversions to the shape
hS�i�p��r��s��t��	

Proof� �of correctness� Recall that the abstract a�ne assignment is safe if

F �	���T �� � 	�� �Assign�F� T ��

Let us start by showing that F �T � � Assign�F� T �	 The de�nition expression ���� of trapezoid
congruences implies that there exists O � ( � C and ) �ZpQrf�gsQt

� such that an element

X of T is expressed

X  A�
p�r�s�tX

i��

�	i � �i�Si
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an element X � of F �T � is expressed

X �  F �A� �
p�r�s�tX

i��

�	i � �i�u�Si�

F �A� � �F �A�� F �A�� hS �i�p��r��s��t�� and for all i � ��� p� r � s � t� we have �	i � �i�u�Si� �

�O� ciu�Si�� hu�Si�i������������� � �Ai� Bi� hS�i�p��r��s��t�� and

X � � �F �A�� F �A�� hS�i�p��r��s��t�� �
p�r�s�tX

i��

�Ai� Bi� hS
�i�p��r��s��t��

�Assign�F� T �

Now F �T � � Assign�F� T � and �nally F �	���T ��  F �T �Zn� � F �T � �Zn � Assign�F� T ��
Zn  	�� �Assign�F� T ��	

Example

Suppose the assignment F

l�� ���i	�� � j

takes the entry context� T+
::,
	
BB

�
�
�
�

�
CCA �

	
BB

�
�
�
�

�
CCA

-
;;.

< � � � �
� � � �
� � � �
� � � �

=
���������

The exit context is given by the trapezoid congruence�+
::,
	
BB


�
�
�

�

�
CCA �

	
BB

�
�
�
�

�
CCA

-
;;.

< � � �
� � �
� � �
� � �

=
���������

���� Test with RLICE condition� The tests taken into account in our analysis cor�
respond to conditions having an RLICE form	 An advantage of the formalism of trapezoid
congruences is that the negation of such conditions is straightforward �when the modulo of
the RLICE is not null or at least one of its bounds is in�nite�	

Definition ��� �Abstract test Test�� Let C be a RLICE� T an equational trapezoid
congruence and E the set of equational trapezoid congruences consisting of RLICEs of T or of
C such that their number is maximal	 The abstract test Test�T� C� of condition C on context
T is a minimal equational trapezoid congruence for the order ��� 	 	�� in E	

First remark that if the RLICE system obtained by adding the RLICE condition to the
context is an equational trapezoid congruence then it is the result of the abstract test and

�The variables are in order i� j� k� l
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in this case the abstract test is exact� hence optimal	 The cases where the RLICE system�
obtained by adding C to T � is singular are dealt with by removing one of the RLICE in order
to get a trapezoid congruence	
The above de�nition only concerns the true branch of a test	 The abstract test involved

on the false branch is obtained by semantically negating the condition	 The abstract test
should have the condition ����N� with N the negation of the LCCE meaning of C	 When the
negation of 	���C� is not a LCCE� but a conjunction of the LCCEs N� and N� �the case where
the coset congruence of the LCCE is a �nite integer interval�� an approximation is obtained
by taking the join of the abstract tests with ����N�� and with �

���N��	
This operator is not comparable with the abstract test on rational relational cosets� it is

in fact the only one not extending the corresponding operator on cosets and make the two
analysis non comparable	 This drawback is removable just by adding in the de�nition of the
abstract test a special case corresponding to a rational linear congruence equation condition
and a rational relational coset context� and considering their exact intersection	

Proof� �of correctness� Let us show that if S is the set of integer tuples solutions verifying
the condition C we have

	���T �� S � 	���Test�T� C��

Every element of E by de�nition contains T �C� hence T �C � Test�T� C� and �T �C��Zn �
Test�T� C��Zn and the result	

Example

Suppose we are analyzing the conditional �
if ��x � y� mod �

� � � then

�S�

else

�T�

with an entry context �before the if statement�+
,
	

 �
�
�

�
A �

	

 


�

�
�

�
A

-
.< � � �

� 
� �

� �� �

=
���������

we get� +
,
	

 �


�
�

�
A �

	

 �

�


�


�

�
A

-
.< 
� ��� 
�

� 
��� �

�� ��� 
�

=
���������

At the entry of the $else% branch� adding to our original RLICEs system the complementary
condition

x� y � �
��� �� mod �����

we get�
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+
,
	

 
���

��

���

�
A �

	

 �


�
�
�


�

�
A

-
.< 
� ��� 
�

� 
��� �

�� ��� 
�

=
���������

���� Projection� The abstract projection is useful to print the results of an analysis or to
forget about some variables during an analysis� for example at the end of a procedure	 The
de�nition is very close to the one of abstract assignment� both being a�ne transformations	

Definition ��� �Abstract projection Proj�� Let T  �A�B� hSi�p�r�s�t� be a trapezoid
congruence� V a set of variables of the program and AV and SV the projections of the lower
bound and the matrix of the shape of T on V 	 The abstract projection Proj�T� V � of the
context T on the variables of V is de�ned by8

AV �
p�r�s�tX

i��

Ai� AV �
p�r�s�tX

i��

Bi

9
hS�i�p��r��s��t��

where

hS�i�p��r��s��t��  
p�r�s�t7

i��

hSV ii�������������

and

�Ai� Bi� hS
�i�p��r��s��t��  CasthS�i�p��r��s��t�	

�
�O� ciSV i� hSV ii�������������

�
and B 
A  SC� �� is � if � � i � p� � otherwise� �� is � if � � i
 p � r� � otherwise� �
 is �
if � � i
 p
 r � s� � otherwise� �� is � if � � i
 p
 r 
 s � t� � otherwise	

The proof of the correctness of the abstract projection is quite close to the one of the abstract
a�ne assignment	 It is in fact the justi�cation of the expression of the abstract projection	

Example

The exact projection of the trapezoid congruence

i � ��� �� h�i


�i� k � ��� �� h�i

j � ��� �� h�i


�i
 j � l � �
��
�� h�i

on the subspace corresponding to the last two variables �the subset V  fk� lg� is

k � ��� �� h�i


k � l � �
��
�� h�i



��� VI� ABSTRACT INTERPRETATION OF TRAPEZOID CONGRUENCES

The opposite operator� that is embedding a trapezoid congruence of Qn in Qm with m � n� is
even simpler than the projection because the embedding of the linearly independent vectors
of the original trapezoid congruence shape are linearly independent	

���� Example� A prototype �about ���� lines of Standard ML including the underlying
coset lattices operators� is implemented according to the previous de�nitions in order to
solve the approximate semantic equations automatically following the abstract interpretation
framework of �CC���	
The example of Figure VI	�� corresponds to a backsubstitution on a matrix structured as

a set of linear �nite di�erence equations with boundary conditions imposed at endpoints	 It
solves sx � b for triangular matrices of shape�	

BBBBBBBBBBB


� x x

� x x

� x x

� x x

� x x

� x x

� x x

� x x

� x x

� x x

�

�

�

�

�

�
CCCCCCCCCCCA

where x represents possibly non null elements and empty spaces stand for zeros	 The use of
while loops instead of for loops is only for sake of clarity in the process of determining the
set of semantic equations	
If � � denotes the program point just preceding the statement of the corresponding line

on Figure VI	�� and T� the system of RLICEs veri�ed by the integer program variables at
point � �� the system of approximate semantic equations associated with the backsubstitution
procedure is the following�

T�  Test�T�� �i � � mod �����rT������

T
  Assign�T�� j ! ne�����

T�  Test ��T
rT���� �j � ��� ne� mod ���������

T�  Assign�T�� l! ne � i� j 
 ne�����

T
  Assign�T�� k! ne � i� ������

T�  Test ��T
rT��� �k
 ne � i � ��� nb� mod ���������

T�  Assign�T�� k! k � ������

T�  T
rT�����

T��  Assign�T�� j ! j 
 ������

T��  T
rT������

ne and nb are supposed to be some constants
 declared in the calling procedures	 The
resolution process converges in two iterations and gives the following interesting result that


In the following
 ne � � and nb � �� ne and nb respectively correspond to height and width of the
rectangles of possibly non null coe�cients of the matrix being backsubstituted�
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PROCEDURE bksub�ne�nb�n�INTEGER�VAR x�glxarray�

s�glsarray�b�glbarray��

VAR

i�j�l�k�INTEGER�

BEGIN
���

�� FOR i��n	nb DOWNTO ne	nb�� DO BEGIN

�� j��ne�

�� WHILE ����j� AND �j��ne� DO BEGIN


� l��ne��i	�� �j�

�� x�l���b�l��

k��ne�i ���

�� WHILE ��ne�i �����k�

AND �k���ne�i �nb�� DO BEGIN

�� x�l���x�l�	x�k��s�l�k��

k��k��

�� END

�� j��j	�

�
� END�

��� END

���

END�

Figure VI��
� Backsubstitution following a Gaussian elimination	

at point �� the accessors of the array s verify�

k � �� ��� �� h�i


k � l � �� �
��
�� h�i

That is a good approximation of the e�ectively used part of matrix s	 The origin of the
inexactitude is that the representatives of trapezoid congruences are supposed to be parallel
to the directions of the modulo and that it is not the case here since representatives are
rectangles and the modulo is along the �rst bisector	
The compile time detection of such properties allows to use naive algorithms like the one

given in Figure VI	�� without worrying about optimal storage problems on sparse matrices	
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CHAPTER VII

APPLICATIONS

�� Representation of integer arrays

The following procedure is used in the process of data encryption coming from �PFTV���	
Although it is not the optimal coding method� it very well illustrates the possible use of the
trapezoid congruence analysis for the purpose of representing integer arrays	

procedure ks�key� gl�
array� n� integer� var kn� gl
�array��

var

j�it�id�ic�i� integer�

begin

���� if n � � then begin

���� for j �� � to �� do begin

���� glicd�j� �� key�ipc��j�� end end�

�
�� it �� ��

���� if �n��� or �n��� or �n��� or �n���� then it �� �

���� for i �� � to it do begin

���� ic �� glicd���� id �� glicd�����

���� for j �� � to �� do begin

���� glicd�j� �� glicd�j���� glicd�j���� �� glicd�j���� end�
��
�� glicd���� �� ic� glicd���� �� id end�

����� for j �� � to 
� do

����� kn�j� �� glicd�ipc��j��

end�

where glicd and ipc� are global arrays of �� integers and ipc� a global array of �� integers	
This procedure is called several times to make �� sub�keys from the initial one key	 Remark
that the abstract version of the conditional expression of the line �� is n � ��� ��

�
��
�

�
	 The

integer arrays ipc� and ipc� are constants of the program	 The relation between their indices
and their values can be abstracted by a trapezoid congruence	 Let us call index� the abstract
index of the constant array ipc� and ipc� the corresponding value	 In our example� ipc� is
instanciated to�

���
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and is safely represented by the trapezoid congruence�

ipc� � ��� ��� h�i

� � index� � ipc� � �
�� �� h��i

Since it is very simple to determine that for two di�erent values of the index index� �element
of ��� ���� the corresponding values of ipc� in the trapezoid congruence abstraction of ipc�
are di�erent� we know that all the references to the elements of the array key at program
point �� are distinct	 Such a conclusion allows the loop parallelization when the mentioned
references are on the left hand side of the assignment	 The abstract relation between the
value ipc� and its index index� is a safe relation between the index of an element of the array
key and its position in the array glicd� if the element e of index ind in the array key has
been assigned to array glicd with index ind� then the relation

ind� � ��� ���h�i

� � ind � ind� � �
�� �� h��i

holds	
If we rewrite the loop of program point ��

��� � for j �� � to �� do begin

��� � k �� j� l �� j���

��� � glicd�k� �� glicd�l��

�
� � k �� j���� l �� j����

��� � glicd�k� �� glicd�l� end�

the trapezoid congruence analysis determines the projection of the approximation of the
invariant on the variables k and l

l
 k � ��� �� h�i

k � ��� ��� h�i

at program point �� and

l 
 k � ��� ��h�i

k � ���� ���h�i

at program point ��	 Hence making the join

l 
 k � ��� ��h�i

k � ��� ���h��i

of these two invariant provides an approximation between the index k of an element of the
array glicd after the loop and its position l in the array glicd before the execution of the
loop	 The combination of such information provides safe relations between the index of the
input array key and the output array kn	
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���� Related work� Several methods exist for summarizing array accesses� including those
based on simple sections �BK��� that are a special kind of trapezoid where the linear coe��
cients �guring in the equational representation are in f
�� �� �g� or on regular sections �HK���
that corresponds to the combination of the two existing non relational analyses of inter�
vals �CC��� and cosets �Gra���� even on convex hulls based on �CH��� that �gures in �Tri���	
�May��� proposes an approach quite similar to a simple classical non relational interval anal�
ysis	

�� Dependence analysis

The use of a relational integer abstract interpretation for solving data dependence problems
is described in �Mas���	 The use of the trapezoid congruence analysis in this framework is of
course very interesting because of the use that it makes of the models of multidimensional rect�
angles and linear cosets	 The very original contribution of the trapezoid congruence analysis
for testing data dependence comes from its possibility to give a very accurate representation of
indirection arrays	 For example� very frequently� indirection arrays implement permutations
that are represented using a trapezoid congruence �like in the preceding section�� and if the
trapezoid congruence approximation is accurate enough� a loop such as

for i �� � to n do

A�a�i�� �� B�i�

is possibly parallelized by taking into account the permutation feature of the indirection array
a	

On the next program example

for i �� � to �

 do begin

�S� A���i� �� B�i���

if even�i� then

�T� C�i� �� D�i��A���i����A���i	
��A�i� end

the non relational analysis detects that the variables A���i� of statement fSg and A���i��� of
statement fTg are independent	 The relational analysis determines that the variables A���i�
of fSg and A���i	
� of fTg are dependent and the corresponding distance vector is ���	 It
determines also that the variables A���i� of fSg and A�i� of fTg are dependent and the
corresponding distance vector is �i�	

The analysis of the program

for i �� 
 to �
 do

for j �� 
 to �
 do begin

for k �� 
 to �
 do begin

F� �� j	�� F� �� ��i��� F� �� ��k	��

�S� A�F��F��F�� �� C�i�j�k� end

for k �� 
 to �
 do begin

G� �� ��i�
� G� �� ��j	�� G� �� 	��k�
�

�T� B�i�j�k� �� A�G��G��G�� end end
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using the linear congruence analysis of �Gra��a� implemented in our prototype determines
that the statement fTg may depend on fSg for the elements A�A��A��A�� of the array A

characterized by the relation

A� � �� mod ����

A� � � mod ���


A� �A�  
�

�� Other derived analyses

Because the array indexes are essentially in a constant integer interval �multidimensionnal
integer rectangle for multidimensionnal arrays� the combination of the trapezoid congruence
analysis with a classical interval analysis should improve the accuracy of the results	 Indeed�
the choice made in the join operator between the di�erent join strategies is more precise
if the information resulting from an interval analysis is taken into account	 For example
choosing between ��� �� h�i and ��� �� h�i under the constraint ��� �� should lead to ��� �� h�i
since ��� �� h�i � ��� ��� ��� �� h�i � ��� ��	
Several analyses are easily derived from the trapezoid congruence analysis� either in a

non relationnal way or in a relationnal way	 It is the case when the modulo of the trapezoid
congruence is �xed during the analysis �its value depends on syntactic features of the program
for example�� a special case of which considers always null modulo elements �they are in fact
a special case of linear inequalities�	
Another special kind of trapezoid congruences is possibly considered where all the linear

coe�cients of the equational representation are in f
�� �� �g	



CONCLUSION

The presented work� in addition of completing the existing analyses on integer numbers�
provides a method for combining two analyses	 First� two well known abstract domains are
considered and a more general than these two basic is built	 Instead of the usual combination
of the two basic analyses� which runs in parallel the two analyses and makes them interact at
every step of the analysis� our combination runs only one analysis that heuristically determines
at each step which one of the two basic analyses is the most informative	 This is enabled by
the generallity of our model	
A very interesting future work using the trapezoid congruence analysis is to design an

abstract domain dealing with integer arrays by representing them by trapezoid congruence
relations� that was our initial goal	 It has been shown in this work that for example integer
arrays implementing permutations are very well abstracted by trapezoid congruences� even
when they are not abstracted by linear constraints or by linear congruence equations	
On an other hand� our analysis is extensible to an analysis of rational variables� by simply

suppressing a number of links between the two abstraction levels� hence giving very close
algorithms	 This new analysis is then used to represent general arrays of rational numbers	

���
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