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RESUME. L’analyse sémantique des variables numériques d’un programme consiste
a déterminer statiquement et automatiquement des propriétés vérifiées par celles-ci
a l'exécution. Différentes classes de propriétés (relations d’égalité, d’inégalité, de
congruence) ont été étudiées. Cette thése propose la généralisation d’une partie
des modéles précédents. Plus particuliérement, en utilisant le cadre formel fourni
par I'interprétation abstraite, nous proposons, d’une part, un ensemble de propriétés
généralisant les intervalles et les classes de congruences de Z et, d’autre part, une
généralisation des trapézoides et des systémes d’équation linéaires de congruence de
Z". La définition d’une abstraction rationnelle de ces differentes propriétés permet
d’obtenir des approximations, dont la complexité reste polynomiale en le nombre de
variables considérées, des opérateurs sur les propriétés entiéres. Ces analyses, en
général plus précises que la combinaison de celles dont elles sont issues, permettent de
choisir dynamiquement le type de propriétés (entre relation d’inégalité ou de congru-
ence) fournissant une information pertinente sur le programme considéré. Le modéle
relationnel mis au point correspond & de nombreux motifs décrits par les indices des
tableaux utilisés dans le domaine du calcul scientifique. Il est donc particuliérement
bien adapté & I’analyse d’indices de tableaux, voire a la représentation abstraite de
tableaux d’entiers.

Semantic analysis of program numerical variables consists in statically and automat-
ically discovering properties verified at execution time. Different sets of properties
(equality, inequality and congruence relations) have already been studied. This thesis
proposes a generalization of some of the below patterns. More specifically, the ab-
stract interpretation is used to design on the one hand a set of properties generalizing
intervals and cosets on Z and on the other hand, a generalization of trapezoids and
linear congruence equation systems on Z”. A rational abstraction of these properties
is defined to get safe approximations, with a polynomial complexity in the number
of the considered variables, of the integer properties operators. Those analyses, more
precise than the combination of the analysis they come from in general, allow to dy-
namically choose the kind of properties (inequality or congruence relations) leading to
relevant information for the considered program. The described relationnal analysis
corresponds to numerous patterns encountered in the field of scientific computation.
It 1s very well adapted to the analysis of array indices variables and also to the abstract
description of integer arrays.
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INTRODUCTION

La partie la plus importante du temps nécessaire a ’exécution de la plupart des programmes
de calculs scientifiques est attribuée aux boucles effectuant des opérations sur des tableaux de
données. La transformation et 'optimisation de ces boucles [LKIK85, AK84, AK87, FWO1,
ANS88, WLI1b] en vue de la génération du code adapté a la machine-cible nécessite une bonne
compréhension, lors de la compilation, de la structure des acces aux tableaux qui y sont effec-
tués, lorsque ceux-ci ne sont pas considérés comme des scalaires [CCK90]. Des études pragma-
tiques [SLY89, EHLP91] ont été menées; elles justifient les méthodes plus systématiques parmi
lesquelles on trouve par exemple la reconnaissance par idiomes [JD89, PP91, AHI90]. De tres
nombreuses analyses de dépendances qui permettent de valider la correction des transforma-
tions de boucles proposées ont été mises au point dans [GS90, Fea88a, Wal88, D’H89, BKS&9,
MHL91]. D’autres méthodes analysent la localité des données référencées lors d’un acces a
un tableau afin d’améliorer 'adéquation du code généré a la distribution et & la hiérarchie de
la mémoire de la machine-cible dans [TP93, WL91a, GJG87, HKT92, KL.S90, Ger89]. Toutes
ces analyses reposent sur ’observation que la majorité des acces aux éléments des tableaux
sont généralement des fonctions linéaires des indices des boucles les englobant [SLY89], du
moins c’est le seul probleme traitable de fagon exacte [Dow90] et sont donc mises en échec
par I'utilisation de tableaux d’indirections. C’est pour combler cette lacune que nous nous
proposons de définir une méthode efficace qui permette d’analyser statiquement les tableaux.

Le tout premier choix a effectuer pour mettre au point notre analyse est celui du modele
utilisé pour trouver une approximation de la valeur exacte d’un tableau. La représentation
d’un tableau par une fonction, qui est intuitivement la plus évidente, est malheureusement un
mauvais point de départ car elle mene a des algorithmes de coit exponentiel [Jou87]. Nous
avons donc choisi de représenter un tableau par une relation entre la valeur de ce tableau et
son indice (éventuellement de dimension supérieure & un).

Le second choix, tout autant guidé par un souci d’efficacité, consiste a utiliser des relations
sur les rationnels au lieu de relations sur les entiers (rappelons que les valeurs et indices d’un
tableau d’indirection sont des entiers).
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Pour ce qui est de la forme des relations utilisées, elles doivent au moins pouvoir exprimer
les matrices bandes, triangulaires et autres caractérisations fréquentes de la localisation des
valeurs des éléments d’un tableau [Cox88, BK93]. D’autre part, des analyses relationnelles
désormais classiques existent. C’est le cas des égalités [Kar76] et inégalités [CH78] linéaires
entre variables et des relations de congruences linéaires entre variables [Gra91b]. Nous avons
choisi de nous baser, d’une part, sur un sous ensemble des polyedres convexes et, d’autre part,
sur les relations de congruences linéaires.

L’analyse par inégalités linéaires, autrement dit par polyedres convexes, peut étre simpli-
fiée en restreignant les orientations possibles des différentes faces du polyedre. Par exem-
ple, en considérant que ces faces doivent étre paralleles deux a deux et que pour la moitié
d’entre elles leurs normales sont linéairement indépendantes, on obtient un cas particulier
que nous nommons trapézoide. Le modele sur lequel s’appuie ’analyse que nous nous pro-
posons de construire dans la partie 2 est une généralisation du trapézoide et de la classe de
congruence rationnelle relationnelle (solution d’un systéme d’équations linéaires de congru-
ences rationnelles) et correspond donc aux solutions rationnelles d’un systéme d’équation de
congruence a résidu borné de la forme :

(1) a1 + Qs+ ...+ azz, = A mod (¢) A€ [a,b]

dont tous les coefficients sont rationnels. Par interprétation abstraite [CC92b], on obtient
donc une premiere analyse relationnelle de congruence de trapézoides concernant les variables
entieres d’un programme.

Cette analyse rationnelle des variables entieres peut étre rendue plus précise en considérant
pour chaque congruence de trapézoides ’ensemble de points entiers qu’elle contient. Ce travail
est effectué dans la partie 2 dans le cas n = 1 de la définition (1). On s’apergoit que ’ensemble
des points entiers d’un ensemble d’intervalles a extrémités rationnelles de la forme

{la;b],[a+ ¢,b+ ql,[a+ 2¢,0+ 2q],... . [a+ kg, b+ kq)....}
est la réunion de classes de congruences entieres de modulos identiques
{{4+mZl+0+mZ,... [+kO+mZ, ..., u+mZ}

ol [, u, m et 8 sont entiers et # et m sont premiers. Ce passage au modele entier ne doit étre
utilisé au cours de ’analyse que dans les phases critiques (par exemple pour tester si un objet
contient des points entiers ou non) de maniére & ne pas augmenter le cott de ’analyse. Ce
modele étend celui des intervalles de [CCT76] et des congruences de [Gra89] et I’analyse est
par exemple plus précise qu'une analyse de flot de données comme [Gup90], ce qui n’est pas
surprenant puisque le modele des intervalles est déja plus puissant que [Gup90] (voir ’exemple
traité dans [CC92a)).

Mise a part son intégration dans un certain nombre de méthodes de détermination ap-
prochée des dépendances de données ou bien d’estimation de la localité des données comme an-
noncé initialement et décrit dans le chapitre VII, notre analyse permet en outre d’automatiser
I'instanciation de programmes généraux a des cas de figure particuliers. Indirectement, elle
est aussi intéressante pour des analyses qui peuvent se formuler numériquement comme le
partage de données ou bien ’analyse des programmes communicants.



INTRODUCTION 7

Ce travail est constitué de trois parties distinctes. Tout d’abord, des rappels concernant
I’analyse sémantique par interprétation abstraite et plus particulierement les analyses séman-
tiques des propriétés de congruences y sont donnés; on y trouvera d’une part la description
du cadre de travail général ainsi qu'un rappel des analyses classiques développées dans la
littérature concernant les variables numériques et fondées sur une interprétation abstraite, et
d’autre part les propriétés spécifiques aux analyses de congruences qui sont utilisées dans la
suite de la these.

La seconde partie de notre travail est dévolue a la construction de I’analyse sémantique
des congruences d’intervalles, elle est elle-méme divisée en deux chapitres. Dans un premier
temps, nous construisons deux ensembles de propriétés caractérisant des ensembles d’entiers
puis de rationnels et décrivons les relations fondamentales de comparaison et d’équivalence
sur ces ensembles. Une fois ces contructions effectuées, nous établissons la connexion entre ces
deux ensembles de propriétés; celle-ci permet de calculer, en temps constant, dans I’ensemble
des propriétés rationnelles une approximation des opérations d’un coat non constant sur les
propriétés entieres. La construction de cette interprétation abstraite est complétée par la
définition des instructions (ou primitives) abstraites et illustrée par un exemple.

La troisieme partie de notre these correspond a la construction de 'analyse sémantique par
congruence de trapézoides. Le plan de cette construction est en tout point semblable & celui
de la partie précédente. Cette analyse relationnelle généralise I’analyse non relationnelle par
congruence d’intervalles, de nombreuses opérations relationnelles sont réduites a des opéra-
tions non relationnelles construites auparavant. Quelques applications originales, notamment
pour la représentation abstraite de tableaux d’entiers, sont données dans un dernier chapitre.
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CHAPTER 1

STATIC ANALYSIS BY ABSTRACT INTERPRETATION

We introduce in this chapter the basic features of static program analysis based on oper-
ational semantics, called abstract interpretation and designed by P. and R. Cousot [CCT77].
The abstract interpretation framework [CC92b] is here instantiated to the very special case
for which it will be used in the rest of this work. The main characteristic that makes abstract
interpretation a very powerful generalization of classical data flow analysis [MRS&8] is that
its semantic bases provide analyses that can be easily proved correct and that the use of
widening and narrowing operators allow to deal with infinite domains. Abstract interpreta-
tion is now widely used for static analysis in a great number of other fields than numerical
variables analysis, for example logic program analysis [CC92a], type inference [Mon92] and
alias analysis [Deu92].

The first part of this chapter briefly exposes the abstract interpretation framework while
the second gives examples of such analyses in the field of program numerical variables.

1. The global design of the analysis

The first choice concerns the description of the meaning of a program. Two orthogonal
concepts that are denotational (with functions that map program inputs to program outputs)
and operational (with transition systems that describe every small step of the program)
semantics are designed for this goal. Following [CCT79], we take as standard semantics an
operational semantics consisting of the transition system

(5,7,0,9)

where 5 is a set of program states, 7 a transition relation binding a state to its possible
successors, ¢ C 5 a set of initial states and ¢ C 5 a set of final states. Every program is
associated with a transition system (for example, the set S of states of a program with m
control points operating on n distinct integer variables is [1, m] x Z").

Then the forward collecting semantics is the sequences of finite partial execution traces,
starting with an initial state, in which two consecutive states satisfy the transition relation.
In order to discuss program invariance properties, we approximate the forward collecting
semantics by the descendant states of the initial states, considering sets of states occurring in

11



12 I. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

the original sequences of finite partial execution traces (indeed, program invariance properties
do not deal with the execution order).

The so-called concrete semantic domain is the powerset P(5) of the set S. The concrete
semantic function, which is used for associating its concrete semantics to each program, is
the strongest post-condition operator

spl o P(S) — P(9)
I — U{s|3s" €l : (s,8) €T}

More precisely, the meaning of a program associated to the transition system (5, 7,¢,¢) is
the least fixpoint of the operator sp]. Unfortunately, most of the time this fixpoint is un-
computable, and here, abstract interpretation introduces the fundamental concept of approx-
imation. The idea is to introduce a new domain somehow connected to P(.9) instead of the
semantic domain, on which an approximation of the fixpoint equation is computable, provid-
ing an approximation of the exact solution. The connection is modeled by the use of semi-dual
Galois connections between posets' ( [0.44] for an inverse order on the abstract domain L*).
For more precisions and definitions about the lattice theory see [Bir67].

DEFINITION 1 (GALOIS CONNECTION (a,7)). Let L and L' be two posets. The pair of
maps (a,7) € (L — LY x (L} — L) is a semi-dual Galois connection if o and v are monotonic
and

ICyoa AN aoyLC T

where 7 is the identity function (either on L or on L*). « is called the abstraction function
and v the concretization function. Moreover, if « is surjective then L' is isomorphic to a
Moore family of L.

Hence the approximation is defined by a semi-dual Galois connection or dually by a Moore
family (a meet closed subset of the semantic domain). The next theorem establishes the
possibility of computing a safe approximation of the wanted least fixpoint on the concrete
domain by a fixpoint computation on the abstract domain.

THEOREM 2 (FIXPOINT APPROXIMATION [Cou8l]). Let L and L be two complete lattices,
(a,7) a semi-dual Galois connection, F a monotonic operator on L and F* a monotonic
operator on L' greater than ao Floy. The least fizpoint of F is less than (or safely approzimated
by) the concretization of the least fizpoint of F*.

This property is generalized to complete partial orders in [CC92b]. If the abstract domain is
infinite or has too long ascending chains, we might be interested in approximating the least
fixpoint computation in the abstract domain itself. The widening operator extrapolates the
iteration process.

IPartial ordered sets.
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DEerFINITION 3 (WIDENING OPERATOR V [CCT76]). Let L be a complete lattice. The oper-
ator V: L X L — L is a widening if

(1) it is greater than the least upper bound on L and
(2) for all increasing chain (z;);cn of elements of L, the series defined by y, = x, and
Yni1 = Yn V&, is stationary after a finite number of steps.

Practically, instead of a single fixpoint equation (shown to be the exact invariant of the
program), a fixpoint equation system is considered, where the original equation domain is
partitioned (with respect to the program control points for example). Each elementary pro-
gram statement is then approximated by a monotonic operator on the abstract domain.

The design of an abstract interpretation is divided into three steps. First an abstract
domain (with the corresponding abstraction and/or concretization) is extracted from the
concrete semantic domain, possibly with an isomorphism to its machine representation if it
is not directly implementable. Secondly, a set of abstract operators approximating as close
by as possible (when the best one is not computable) the program statements are provided.
Finally, the convergence of the iteration process for computing the fixpoint approximation is
ensured, possibly introducing a widening operator.

Only the integer variables are of interest for our analysis, hence in a first approximation
the set of considered states will be Z" where n is the number of variables in the program
and the concrete semantic domain is the powerset P(Z") (standard semantics). For the
presented analyses, the characterized states are either relationally approximated — and the
semantic domain is really PP(Z") — or they are non relationally approximated and hence
P(Z") is replaced by P(Z)". The next approximation introduces a set C'P of properties of
specific interest on integers, hence PP(Z") is now approximated by C'P. Then for machine
representation requirements, the integer properties are denoted as rational subsets (using the
set AP), the intersection of which with Z" will consist of the preceding integer properties. Two
abstractions are considered that are the one between P(Z") and C'P and the other between
C'P and AP. CP is the abstract domain of the first approximation although it is the concrete
domain of the second. The first abstraction is modeled by a single concretization function
Yo : CP — P(Z") giving the meaning of an integer property in terms of integer tuples (in fact
Yo is the extension of the identity to C'P), the approximation ordering is therefore induced by
the set inclusion relation on the powerset of Z™. The latter connection between concrete and
abstract domain is established via a pair of abstraction and concretization function (a,7).
Examples of such connections appear in Chapters IV and VI where the concrete domain is
CC (respectively RCC') and the abstract one is /C (respectively T'C') with the particularity
that (a, ) (respectively (a™,~™)) are not Galois connections.
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2. Numerical variables analyses

This section presents some of the existing static analyses described in the literature dealing
with program numerical variables. These are partitioned between the non relational and the
relational ones.

2.1. Non relational analyses. The program numerical variables are considered sepa-
rately. The interval analysis generalizes (i.e. is more precise than) the constant propagation
and the sign analysis; the congruence analysis generalizes the parity analysis and the constant
propagation. All these analyses concern either integer or rational values and have P(Z) as
semantic domain for their integer valued version. The abstract operators are generally the
best ones for the considered approximation.

Analysis of signs
The considered Moore family is here

{0,272+ ,{0}, 2", 2+, 2}

An example of abstract statement is given for the abstract sum operator &; it is point by
point defined by:

Voa=0,Z"02"=2,Z"®0{0}=2Z7",...

There is no need here for a widening because the lattice is finite and of height 3.

Constant propagation [Kil73]
The abstract lattice is here the set of all integer singletons, the empty set and Z ordered by
inclusion. The abstract sum operator & is defined by:

{e}e{yy={a+y}.0a{y}=0Za{y} =%

and is commutative. The height of the lattice is 2.

Interval analysis [CC76]

The abstract lattice is the set of possibly infinite integer intervals [a,b] where a,b € Z U
{—00,+o0} and a < b, completed with the emptyset and ordered by the set inclusion induced
order. The abstract sum operator ¢ is defined by:

[a,b) @ [c,d]=[a+c,b+d,0dz=10

and is commutative. This lattice has an infinite height and a widening is needed, which
extrapolates the increase of the interval bounds

[a,b]V][e,d] = [if ¢ < a then — oo else a,if d > b then + oo else b]

and its result is ) when at least one operand is (.

Parity analysis
The abstract domain is the four element lattice {0, 2Z, 1+ 27Z,Z}. The abstract sum operator
@ is defined by:

Vpr=0,Z02=2,2202Z=(1+22)0 (1+2Z)=27Z, (1+2Z)® 2Z = (1 +27Z)
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and is commutative. There is no need of widening here.

Congruence analysis [Gra89]
The rational version of this analysis is exposed in the next chapter.

All these non relational analyses are rather simple but do not provide much information.
They are not of interest for representing general array indexes, which is our purpose.

2.2. Relational analyses. These analyses compute approximations of the exact invari-
ants where all the numerical variables are considered simultaneously, hence relationally. The
linear constraints analysis generalizes the non relational interval analysis and the linear equal-
ities analysis, while the linear congruences analysis generalizes the non relational congruence
analysis.

Linear equalities [Kar76]
It considers the systems of equations such as

Zn: Aixg =3
i=1

Linear inequalities [CHT7S]
The semantic domain is P(Q") and the abstract domain is the set of convex polyedras of Q"
represented by systems of equations of the kind

Zn: Az < 8
i=1

The widening operator which is very frequently needed in such an analysis is based on ex-
perimentation and on the specific representation of a convex polyhedron by its system of
generators.

Linear congruences [Gra9lb]
The semantic domain is PP(Z") or PP(Q"). The abstract domain corresponds to the solutions
of the systems of linear congruence equations of the kind?

Z/\Mi =c¢ mod (¢q)
i=1

in Z" or Q™. More details are given on this analysis in the next chapter and very often in the
rest of this work.

The motivation for designing a new non relational integer semantic analysis is first to be able,
using only one analysis, to discover program invariant approximations which would have
been determined either by the interval or by the congruence analysis. This corresponds to
automatically deciding, during the static analysis, which one of these analyses is convenient
for every program point. The second goal is to determine invariant approximations when
both interval and congruence analyses would have failed.

r=y mod (q) means Ik €Z x =y + kq
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ind := 1;
while nn > ind do begin
for i1 := 1 to ind do begin
m := 2*ii -1;

for j := 0 to ((2*nn - m) div 4xind) do

i :=m + 4xind*jj;
{s? = datalil + ... ;
{T} = datali+1] + ... end end
ind := 2*ind end;

Ficure I.1. An extract of Fast Fourier Transform algorithm.

Let us consider the Fast Fourier Transform algorithm of figure 1.1 coming from [PFTV8&6].
The accesses to the array data in statements {S} and {T} are summarized by the relation

a—m=0 mod(4) V a—m=1 mod (4)

where a stands for the indexes of accessed elements of the array data. Typically, congruence
analysis will fail to summarize such information because of the consecutiveness of the two
accessed elements, while interval analysis will fail because of the congruence character of the
loop indices jj and ind in the expression of i. Other interesting information in order to
parallelize the execution of these three nested loops could result of the parity of variable m
and of the bounds on variable ii. This shows the need for an ambivalent analysis.



CHAPTER 1I

CONGRUENCE SEMANTIC ANALYSIS

In his PhD thesis [Gra91a], Granger has designed, using a common algebraic framework, four
semantic analyses dealing with congruence properties of numerical variables. These analyses
are classified into relational and non relational ones on one hand and into integer and rational
ones on the other hand. In order to build our analyses, we are going to use many properties
of Granger’s rational analyses. The goal of this chapter is to recall the general framework
of congruence semantic analyses and the main properties that are used in the rest of this
work. All the properties figuring in this chapter are proved in [Gra9lal. After the formal
definition of general cosets, first a special kind of cosets of the group of rational numbers Q
are considered and, then, properties of the linear analysis based on the use of a special kind
of cosets of Q" are recalled.

DErFINITION 4 (COSETS). Let G be an abelian group and H be a subgroup of G. The

equivalence classes of the equivalence relation of the kind # —y € H are called cosets modulo
H. They have the form

a+H = {ae€G/3IheHx=a+h}

where a is an element of the coset.

The set of cosets of an abelian group is a lattice and hence fits the semantic analysis framework.

17
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1. Rational arithmetical congruence analysis

The usual way to build a set of congruence properties is first to characterize a set of relevant
subgroups of the considered original abelian group and then to consider the corresponding
lattice of cosets. This is the purpose of the theorem 5 and the definition 6.

THEOREM 5 (FINITELY GENERATED SUBGROUPS OF Q). The finitely generated subgroups
of Q have the form qZ (noted (q)) where ¢ € Q.

THEOREM & DEFINITION 6 (RATIONAL ARITHMETICAL COSETS). The join of {0,Q} and
of the cosets p + qZ (noted p{q) where p and q are rational numbers) of Q modulo finitely
generated subgroups is a Moore family of P(Q); it is called the lattice of rational arithmetical
cosets.

Before we specify the operations on this lattice, we extend the arithmetical operators to
rational numbers. Based on the divisibility notion stating that given two rational numbers p
and ¢, p is a divisor of ¢ if and only if there exists an integer k such that ¢ = kp the following
extensions of the arithmetical operators hold.

DEFINITION 7 (ARITHMETICAL OPERATORS EXTENSIONS). The euclidean division, the
modulo, the greatest common divisor and the least common multiple are defined by

div.: OxQt — Z mod : QxQt —
(%, g) —  sgn(bc)ad div |be] (%, g) — —sg“(bc)‘lljdrwd |be]
ged @ QT xQt — QF lem : Q*xQt — QT
a ¢ cd(ad,be a ¢ lem(ad,be
(§,5) — = (§,5) = e

Now we characterize the operations on the complete lattice of rational arithmetical cosets:
the comparison, the least upper and the greatest lower bounds.

PROPOSITION 8 (LATTICE OPERATIONS). Let py, q1, pa and g be four rational numbers.

Pi{@) Cpa{2) & p1—p2 €(@)ANq € (¢)
pl@)Npalge) #0 & p1—ps € (ged(q1, ¢2))
cepi{q)Npa{g) #0 = pi{q) NMps{g) = clem(qy,q2))
pil{q)Upa(q2) = pi(ged(qr, g2, p1 — p2))

The operations are extended to deal with the extremal elements.

Since the height of the lattice is very big, a widening operator is generally used in this
analysis; several different ones are proposed in [Gra9la]. They are all based on the idea of a
jump to Q in a possibly infinite increasing chain of rational cosets. The different strategies
result from the predicates taken under consideration in order to do this jump to Q. The
simplest predicate is that two consecutive cosets in the increasing chain have non zero distinct
modulos.
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2. Rational linear congruence analysis

When F is an element of {N,Z,Q,R}, E' is the set of tuples of elements of E and E™? is
the set of matrices of elements of F with n rows and p columns. The notation of M?%J as the
matrix corresponding to the columns of M of ranks greater than ¢ and less than j is used in
the following, when 7 is 1 it will be omitted giving M?. M; denotes the column of rank ¢ of
the matrix M. M; possibly denotes a matrix too, the context indicates which semantics is
chosen. The “.” operator is used to denote either the product of one scalar with a tuple, or
the scalar product of two tuples. The vector named O denotes the null vector and the matrix
I(d) the identity matrix of dimension d; it is simply noted I if there is no ambiguity on d.

Following the same approach as in the preceding section, first a set of subgroups of Q" is
characterized, then the set of the corresponding cosets is exhibited.

THEOREM & DEFINITION 9 (LINEAR SUBGROUP OF Q" [Gra9la]). Letp and r be two non
negative integers and M € Q™**" a rational coefficients matriz. A linear subgroup <M>(p ")

of Q" is the set MPZP + MPYLPT Q" of the elements
kl'Ml + k‘z.Mz + -+ k‘p.Mp + O[l.Mp+1 + O[z.Mp+2 + -4 ar'Mp-I—r

where (k;)ien p) € ZF and (a;)iepn ) € Q7. It is the sum of a finitely generated subgroup M?Z?
of Q" and of a subspace MPTPT Q" of Q".

If p+ r = 0 then the convention is that the corresponding linear subgroup is the null vector
stngleton.

A linear subgroup <M>(p ") is possibly denoted using the collection of the columns of the

matrix M instead of the matrix itself, giving (M, M, ... ,Mp+T>(p -

TuepoREM & DEFINITION 10 (LINEAR COSETS [Gra9la]). A linear coset A (M) . of Q"
s a coset of Q™ modulo a linear subgroup <M>(p ") of Q"; it has the form

A(M), . E {A+ MK K€ 2'Q'}
where A € Q" is the representative, (M), ., (M € Q™P*" ) the modulo, p € N the integer
rank and r € N the rational rank of the linear coset A <M>(p oy The complete lattice of linear

cosets of Q" is obtained by adding the empty set.

The lattice of linear cosets is now shown to exactly correspond to the set of solution sets of
rational linear congruence equation systems. The process of getting a linear coset from such
an equation system is exposed, at least the part of the process that will be used in appendix D.

An example of a linear coset of Q? is given on the figure I1.2. It is the solution of the linear
congruence equation z — 2y = 2 mod (6) corresponding to the linear coset

()51

First, a method for finding the coset of Z™ which is the solution of a linear congruence equation
in Z" is needed; the complete method is given in [Gra9la]; it is too long to be recalled here
although it is needed in the implementation of our analyses. Then the resolution of a linear
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— N

N -/

[l )

/ ~

FicurE I1.2. Rational linear congruence equation solution set.

congruence equation in Z"Q" with r» # 0 is given in propositions 11 and 12.

ProposiTION 11 (LINEAR EQUATION IN ZPQ" [Gra9la]). Let A4, be a non zero rational
number. The solution set of the linear equation

/\1x1 + Azwz + ...+ /\p_pr_l_r = a
in the linear coset O (I), ., with 0 < p <p+r—1 is the linear coset

a Al A +r—1
¢ = A—Ip-l-r <Il - A—Ip+r7 s 7Ip+r—1 - ii‘[p+7‘>( N
p,r—

p+r p+r p+r

The columns of the modulo of C' are linearly independent.

PropoOsSITION 12 (LINEAR CONGRUENCE EQUATION IN ZPQ" [Gra9la]). Letq and A, 4, be
non zero rational numbers. The solution set of the linear congruence equation

Mz 4 Az + oo+ A% F oo+ A2, = a mod (¢)
in the linear coset O (I), ., with 0 < p <p+r—1 is the linear coset

a Ay A lq]
C = —1 <I -0, L, - 0. 1.,
/\p+1 p+1 41 /\p+1 p+1 P /\p+1 p+1 /\p+1 p+1
’\p+2 ’\p+r
Loy — /\—Ip+17 N /\—Ip+1
p+1 p+1 (p+1,r—1)

The columns of the modulo of C' are linearly independent.

Then a method that reduces the resolution of a linear congruence equation in a linear coset
to the resolution of another linear congruence equation in a special kind of linear cosets of
the form ZPQ" is given (of which only a special case is explicated here because the other cases
are not used by our algorithm).
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PropPoOsSITION 13 (LINEAR CONGRUENCE EQUATION IN A COSET OF Z" [Gra9la]). The
solution of the linear congruence equation

(2) Ay + Aszs + -+ Az, = @ mod (q)
in the linear coset A(M) ., is the coset

(A+ MB)(MN)

(r',0)
where B <N>(p,70) is the solution of the linear congruence equation
)
(3) (A Asse s AV M yf = (a— (A Asreer s An).A) mod (¢)
y.p

in ZP, if the equation (3) has a non empty solution set. Otherwise, the solution set of
equation (2) is empty.

Finally, the solution of a linear congruence equation system in Q7 is obtained iteratively,
solving first an equation in Q™ and then each other equation in the linear coset resulting from
the preceding resolution.

THEOREM 14 (LINEAR COSET REPRESENTATIONS EQUIVALENCE [Gra9la]). The set of so-
lution sets in Q™ of linear congruence equation systems coincides with the set of linear cosets

of Q.

The operators on the lattice of linear cosets (least upper bound, greatest lower bound and
comparison) are not used in the following and hence not detailed here; only operators con-
cerning linear subgroups comparison are given.

PROPOSITION 15 (LINEAR SUBGROUP COMPARISON [Gra9lal). Let (M), ., and (M), .,

be two linear subgroups of Q™.
MrZP C M'ZPQ"
/ =
M)y € My & { MrtletrQr C o MR T g

(M) 1y is said to divide (M), .
The greatest common divisor of two linear subgroups always exists.

For more details about congruence analysis, see the work of Granger in [Gra89, Gra90,
Gra91b]. We end this chapter with some examples illustrating both analyses we sketched
above.
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Suppose that the program

for i := 1 to n do
{1:} z = i+ 1/(2%i);
{2:%} X = x + 2;
{3:} y 1=y - 2%z;
{4:} od;

is analyzed, using the lattice of linear cosets, with the initial abstract context
1 1

=0 d(—=) A y=0 d(—

x mod ( 10) Yy mod ( 10)

After five iterations, it is automatically discovered that at program points {1:}, {2:} and
{4:} the program variables satisfy

¢ = 0 mod (1)
204+y = 0 mod (55)
Using the lattice of rational arithmetical congruences, it is automatically found that in the
program
X := 2.8b42
{1:} while condition do
{2:} X := x + 1/500;
{3:} od;
{4:}
the program variable z verifies
1 1
t=—— mod (—)
5000 500



Part 2

SEMANTIC ANALYSIS OF RATIONAL INTERVAL CONGRUENCES
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CHAPTER III

DESIGN OF INTEGER AND RATIONAL MODELS

The analysis of interval congruences requires two different domains, a first one of integer
properties for a matter of precision and a second one of rational properties for the efficiency
of its basic algorithms. Although the coset congruence domain is presented before the inter-
val congruence one, we see in Chapter IV that the integer coset congruences are naturally
deduced from the rational interval congruences. The content of this chapter and the next one
corresponds to [Mas93].

1. Notations

The notations of Chapter Il are used. In addition, we have Q_., = QU {-}, Qs !

def def

QU{+x},and Z_, = ZU {-0}, Zyo, = Z U {400} where —oco and +oo are considered
as limits on Q and Z. The usual operators (sum, product,...) on Q and Z are canonically
extended to Q_., Qieo, Z_oo, Zyoo and [—o0] = |—00]| = —00 and [+o0] = [+00] = +o0.
Following the context [—o00, +00]is Q_o UQ o or Z_ UZ . The greatest common divisor
is always non negative. The integer coset a (¢) with integer representative ¢ and modulo ¢ is
the set {a+kq, k € Z}. The rational coset a (q) corresponds to the set {a+ kq, k € Z} where
(a,q) € Q*. The relation I = v mod m, which is equivalent to u — [ € (m), is shortened
to | Z u. An inverse of the integer § with respect to the integer m, when it exists, is noted
0(_%) and satisfies 8071 € 1 (m). 0(_%) is noted #~' when there is no ambiguity on the modulo.
An inverse of # with respect to m exists when ged (6, m) = 1; it is a direct consequence of
Bezout’s theorem!®. For the rest of this chapter, the convention is that an inverse 0(_%) of an
offset 8 is always taken with respect to the modulo m of their coset congruence, if there is no
possible ambiguity (see definition 16 for the definitions of coset congruence and offset).

! Let a and b be two integers; there exist integers u and v such that

uw.a+v.b=ged(a,b)

25
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2. The set ('C of coset congruences on Z

Interval analysis of [CC76] and congruence analysis of [Gra89, Gra91b] are quite orthogonal
concepts. This leads to the definition of a third analysis with the basic idea of generalizing
the first two to the notion of coset congruence. The basic components of coset congruences
(and two degenerate cases of the general definition) are integer intervals and integer cosets.
To fill the gap between these two kinds of elements, general coset congruences are introduced.
A coset congruence is a set of arithmetical cosets with the same modulo and whose repre-
sentatives are separated by an offset such that the common modulo and the offset are prime
numbers.

2.1. Definition.

DEFINITION 16 (COSET CONGRUENCE 6. [l,u](m)). Let l € Z_,, w € Z ., and m,8 € Z
be integers such that ged(#,m) = 1 and m = 0 implies § = 1. The coset congruence §. [, u] (m)
of offset #, lower bound [, upper bound u and modulo m is defined by

[—oo,u]U[l,400] ifl>wuand m=0, (4)
0.L,ul (m) & -
I L) 6 (m) otherwise. (5)
I<r<u

C'C is the set of coset congruences.

A very important remark for the rest of the discussion about coset congruences is that, when
the modulo is non zero, since the offset and modulo are prime numbers by definition, the
single cosets k6 (m) used in definition case (5) are all distinct for m consecutive values of &.
Hence taking a sufficiently wide interval [I,u] provides a way to represent Z (see lemma 17
for details).

One motivation to define such a surprising integer model is that a coset congruence is
exactly the intersection with Z of a much more intuitive model defined on the set of ratio-
nal numbers: the interval congruences that are defined in section 3. In particular, we will
see that the primality between the common modulo and the offset separating the different
representatives comes from that intersection. Another, more practical, reason that leads us
to approximate C'C' with rational interval congruences is that the comparison (set inclusion)
test on C'C' is for the moment particularly inefficient?.

The coset congruences of offset equal to one intuitively correspond to usual integer intervals
regularly dispersed following a pattern of length the value of the modulo. The different other
kinds of integer sets considered in the preceding definition are illustrated by the following
figure:

?No efficient (constant time) algorithm has been found by me
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v 0 T =10 i
(8) WWMMWWH;HW’IO—H****"'
(9) ’ = = : : tossssssnm

The general case (6), corresponding to 5.[1,3](9), is the set of the three integer cosets 5 (9),
10(9) = 1(9) and 15 (9) = 6 (9). The case (7), where the modulo is zero and the representative
bounds well ordered, is noted 1.[5,8](0) and corresponds to the integer interval [5,8]. The
case (8), where the modulo is zero and the representative bounds inverse ordered, corresponds
to definition case (4) and is noted 1.[20,10](0). Finally, the case (9) represents the set of
integers greater than 20 and is the coset congruence 1.[20, +00] (0). Following these four coset
congruence schemes, we see that the representation of Z using such a model is possible in
the case (6) when there is enough distinct cosets, in cases (7) and (9) when the single integer
interval is [—o00, +00] and in the case (8) when the lower bound is the successor of the upper
bound.

The characterization of coset congruences equal to Z or to () is described by lemmas 17
and 18.

LEMMA 17 (COSET CONGRUENCE EQUAL TO Z). Let 8, m and ¢ be three integers, | €
Z_o and u € Z, o, then

{ 1.[e, e — 1](0)
0<|m|<u-141 & Z=< 1.[-00,+0c](0)
.11, u] (m)

Proor. Clearly the case (4) of coset congruence definition leads to Z if and only if u = [—1.
Two subcases based on the nullity of its modulo must be considered for the case (5).
First if the modulo is zero® then the offset is one by definition and the corresponding coset
congruence is Z if and only if v = -] = +00.
Otherwise the modulo is non zero and then the corresponding coset congruence is Z if and
only if the number of its constituent distinct integer cosets is greater than the absolute value
of its modulo. Notice that since ged(8,m) = 1, for m consecutive values of ¢, all the cosets
i0 (m) are distinct and the result follows. O

LEMMA 18 (COSET CONGRUENCE EQUAL TO (). Let 6 and m be integers, | € Z_., and
U € Zijoo, then

m#Z0Au<l < O.[Lul{m)=10

3This case exactly corresponds to the usual integer, possibly infinite, intervals
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ProoF. The first case (4) of the coset congruence definition never provides the empty set.
The latter case (5) leads to the same conclusion when m = 0 but when m # 0 the empty set
is obtained for v < [. O

Remark that the nullity of the modulo implies that the offset is one in the definition of coset
congruences.

2.2. Equivalence Relation. For the relation C induced by the set inclusion relation,
CC'is a preorder. An equivalence relation ~# = C A D is defined to build a partial order on
the quotient set C'C'/4 (for example 2.[7,9](—11) ~ 9.[2,4](11)).

A characterization of coset congruence equivalence is now given. This algorithm determines
if two coset congruences represent the same integer set and is used to implement the relation
/; it is proven correct in appendix A.

THEOREM 19 (COSET CONGRUENCE EQUIVALENCE =). Let Cy =0,.[ly,u1] (my) and Cy =
05. [l2, us] (m2) be two coset congruences. Cy = Csy if and only if

0<|mi|<u—0L+1 0<|mo| <us—1I+1
V V
uy=HL—-1A m =0 A Uy =1 —1 A my=0 (10)
V V
= -l =+ Am =0 Uy = —ly = +00 Ay =0
V
myZ0 A ug <li A meZE0 A uy <ls (11)
V

w=1Vm=20
0,1, = 051,

2<w<m—2 (12)

|ma| = |ma| A ug =l =us—1y A

—m—1
{ 0ls — ol ™ 0, — 6,
{ 0[1—02U2
2<w<m-—2
6, = 0,
0.1, Z 041,

where m = |mq| and w=u; — 1 + 1.

These three cases respectively correspond to ) ~ Cy = Z, €, ~ C; = () and to the general
case. The redundancies figuring in the above formula are not eliminated for a matter of
formulation simplicity.

The quotient set C'C'/4 is abusively called the set of coset congruences.
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2.3. Normalization. If we arbitrary choose a representation of the empty set (1.[1,0](1))
and of the set of integers (1.[0,0](1)) by a coset congruence, if we remark that apart from
them, coset congruences of zero modulo are equivalence classes with only one element, and
finally if we consider the coset congruences with positive modulo, offset and lower bound
positive and smaller than the modulo (recall that for example 2.[7,9](—11) ~ 9.[2,4](11)),
we obtain the following normalization algorithm.

COROLLARY 20 (COSET CONGRUENCE NORMALIZATION || ||). Let I = 8.[l,u]{m) be a co-
set congruence, ||I|| is defined by

ifZC1 then 1.0,0](1)
else if 1 C 0 then 1.[1,0](1)
else if m =0 then 1.1, u] (0)
else if u =1 then C(1.]16,ub] (m))
else ifu—1=m —2 then C(1.[10 — 60+ 1,10 — 6+ m — 1](m))
else if Im| div 2 < 87! mod |m| < |m| then C(—0.[—u, =] (m))
else C(O. 1, u](m))

where ((8.[l,u](m)) = (8 mod |m|). [l mod |m|,u — (I div |m|)|m|]{(|m]|) is compatible with
the equivalence relation ~ and is a normalization operator on CC' /.

Proor. The equivalence between C' € CC and ||C|| comes from theorem 19 and the
normalization character (VC';,Cy € C'C C) = Cy & ||Cy|| = [|C4]]) is provided by theorem 19
too* (successively considering all the cases where two coset congruences are equivalent and
choosing one representation). [

The normalization of elements representing Z and @ is provided in order to simplify the
expressions in the rest of the work; there is no canonical representation for these elements; for
example 0.[0,0] (1) could represent Z as well. The choice between the offset and its opposite
comes from the consideration of the abstraction function, see section IV.1.2. Since most of
the operators that are defined on C'C'/4 are not compatible® with the equivalence relation
~, we cannot denote an equivalence class by one of its representatives and have to use the
normalization operator on C'C'/y defined in corollary 20.

Note that this normalization algorithm could have been used as a concretization application
from C'C into P’(Z) since it gives the unique subset of Z represented by the original coset
congruence. It is not the case because the concretization giving the meaning of an interval
congruence is used instead (see the construction of the abstract interpretation in Chapter IV).

*The unicity of the choice between an offset and its opposite is a consequence of the following
equivalence for § and 6’ prime with m

0+0 200130720

ensuring that our normalization algorithm is idempotent.
SQOperator o is compatible with relation 2 if and only if YC1, C2, C1,Ch € CC (C10Cs) A (Cy ~
C1) A (Ca = Cy) = (CloCh)
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The next lemma is used to define the concretization function in the relational analysis in
section VI.1.3.

LEMMA 21 (INTERSECTION WITH AN ARITHMETICAL COSET). Let 6. [, u](m) € CC/y be
a normalized coset congruence such that m # 0 or | < u, and g a non negative divisor of its
modulo m.

[ ¢ [3]> 13
0.1, u](m) N (g) = {g*(g[mw]<%>) otherwise

PRrOOF.

0.1, u](m)n (g) = ( U 59<m>) N (g)

since ged (g,0) =1

factorizing ¢ in the cosets

[51<w<]5)
which is decomposed according to its emptyness and provides the result. [

2.4. Complementation operator. Let us define two auxiliary functions giving respec-
tively the successor of a possibly positive infinite integer and the predecessor of a possibly
negative infinite integer. Their definitions result from the simplification of the complementary
operator definition.

0 1 Ly — Ly
—00 if n =400
n —
n+1 otherwise

n—1 otherwise

{—I—oo ifn=—o00
n —
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Now the complementary operator which provides the negation of a coset congruence property

is defined.

THEOREM & DEFINITION 22 (COMPLEMENTATION —). Let C' = 0.[l,u](m) be a normal-
ized coset congruence. Its complementary in Z is

C =0.[o(u),x(l+m)]{m)
and verifies:

cne = 0
cCuC = 7

ProoOF. The reader can easily establish the correctness of the complementation formula in
the case where the modulo is zero or the lower bound greater than the upper one.
Now if the modulo is not zero and [ < u, there are exactly m distinct cosets of modulo m
and they are reached if we consider the m cosets of representatives 61,60(l + 1),...,0u,0(u +
1),...,8(l+ m — 1) since # and m are prime. Hence the coset congruences of constitutive
representatives 61,6(1 +1),...,0u and (u+1),...,0(l + m — 1) are complementary of each
other®. [

For example: 5.[1,3](9) = 5.[4,9](9)

and
[5, 9](0) = 1.[10,4](0)
[ ,31(9) = 5.[10,12](9) ~ 5.[1, 3] (9)
1.0,01(1) L.[1,0](1) =0
[5 +o0](0) = 1.[-00,4](0)

Only few analyses like parity, sign or logic program groundness analysis [CC92a] provide such
a complementation characteristic and it will be shown to be very useful in the section IV.3 on
abstract primitives. Although such a property necessitates the consideration of complement
of finite integer intervals and hence complicates the expressions concerning coset congruences,
such a characteristic feature is kept for analysis accuracy motives.

The use of normalized coset congruences leads to simpler expressions than if we had to
generalize the complementation operator to C'C. The complementary of a coset congruence
corresponds to the set of integer cosets not contained in the original one, hence only the
representative has to be inverted; the resulting expression is not always normalized (see the

examples below) although the property VC' € CC/4 C ~ C holds.

SRecall that for a normalized coset congruence, the difference between its greater and lower bounds
is less than its modulo.
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2.5. Set inclusion induced order. Comparison on C'C' is not provided for the general
case because no constant time algorithm had been found by us; instead, only a special case
where one operand is an arithmetical coset is dealt with.

PROPOSITION 23 (PARTIAL-ORDER ON COSET CONGRUENCES). Let C; = 1.[l1,0;](m)
and Cy = 85.[la, us] (ma) be two normalized coset congruences non empty and non equal
to Z such that myms # 0. C; C Cs if and only if

(13) {iﬁlﬁﬂilz{ h_%”1w+ AL

ged (my, ms) ged (my, ms) ged (my, mo)

ProoOF. Let d = ged (my, my) and ¢, = "2,

From the proof of lemma 36 we know that (', C () is equivalent to
li{d) € C,
which is the same as

and multiplying all its representatives and the ones of C, by ;' (such that 6,65 = 1), we
get the equivalent inclusion:

07 (1 + d) (ms) U 071l +2d) (msy) U ... U 051 + qod) (ms) C 1. [ls, us] (ms)

By identifying identical integer cosets, there is a one to one mapping from the integer coset set
{d{my), ..., qd{(my)} onto {85'd (m,), ..., 05" ¢d (my)}, indeed, since ged (65", ms) = 1,
these two coset sets are equal to the set of all cosets of modulo m, and of representative a
multiple of d. Hence permuting the left hand side representatives we get

(02_111 + d) <m2> U (02_111 + Qd) <m2> U ... u (02_111 + QQd) <m2> g 1. [12, Uz] <m2>
which is equivalent to

0711, (d) C 1. [ls, us] ()

Then the problem amounts to characterizing that g, consecutive representatives of the integer
coset 65!, (d) are in the interval [l,,u,]. This is equivalent to the existence of an integer 4
such that
'+ (i—-1)d < I, < 65 +id
{ 02_111+(i+(]2—1)d < uy < 02_111+(i+(]2)d
that is equivalent to

-1,

i—l< 2=l <y

i<t bt
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Uz—ez_lll _ 12—02_111
\‘ d = d +q—1

Special inclusion cases where coset congruences are empty, equal to Z or of zero modulo are
very easy to deal with. Hence the present proposition provides a characterization of the coset
congruence inclusion in the particular case where the smallest one is a simple coset. Since
I have not been able to establish a simple property concerning general coset congruences
inclusion, a new distinct order is introduced to model the precision on the coset congruences
set. It is the goal of the next section. Of course, the naive algorithm consisting of using
w — [ times (when it is finite, the other cases take constant time to deal with) the preceding
algorithm to test the inclusion of 6. [/, u] (m) in an other coset congruence is possible but very
expensive (except if in practice the lower and upper bounds are very close).

and finally

O

2.6. Precision concrete order. Because we are not able to efficiently compare coset con-
gruences and, moreover, for the purpose of the approximate join operator (in section IV.2.2),
we need to choose between non comparable ones, a measure of accuracy ¢ is defined. It par-
tially orders C'C' using an approximation of the cardinal of the integer set where this size is
close to the probability that an integer is in the coset congruence. This is an arbitrary order
defined on C'C'/; it is used by the approximate join operator to make an arbitrary choice be-
tween two rational interval congruences based on the ratio of information (their corresponding
coset congruence) they are associated to. Note, however, that this process ensures that the
approximate join of two integer intervals is the least upper bound in the lattice of intervals
and that the approximate join of two integer cosets is the least upper bound in the lattice of
cosets.

DEFINITION 24 (AccURACY ¢). The accuracy function ¢ associates with each coset con-
gruence a rational number in the following way:

Lo CCly — Q
0 if 0.[1,u](m) =10
3(_“—;_11) ifm=0and —oco<{<u<+0
0.0 u](m) — %_H—l %fm:Oand (l=—00or u=+4c0)
— ifm#0
1—|—ﬁ ifm=0and v<l!
3 if 6.[l,u](m)=12

Intuitively, ¢ arranges the coset congruences in the following informative order:
(1) the empty set;
(2) the half lines (without any ordering) in the middle of the sets of cosets with non zero
modulo “density” (ratio between the number of representatives and modulo) order;
(3) the complementary of finite sets in their complementary size reverse order;
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(4) the set of all integers.

and the finite sets in size order. An example of ascending chain for that partial order is
graphically given by:

0 10 R
0 10 R
............... 0 10 R
e 10
I—O—O—OO—O-O—O—O-O—O-Q}P—O-O—O—O-O—O—O—O—Q-O—O—MM
0 10
0 10
0 10
0 10

and corresponds to

L(1.[L,0](1)) < o(1.[=2,5](0)) < o(1.[=14,3](0)) < ¢(5.[1,3](8)) < ¢(1.[4, +00] (0)) <
1(5.[4,9](9)) < ¢(1.[7,=5] (0)) < ¢(1.[9,5](0)) < «(1.[0,0](1))

The determination of an accuracy function is not unique and has been chosen to be simple.
¢ could have been given without using a numerical function (for example by giving directly
the comparison algorithm).

The set C'C'/ 5 of coset congruences described above has only few interesting algebraic prop-
erties; it is a complete partial order with an infimum and a supremum. Its major drawback
is a lack of least upper bound and of an efficient comparison algorithm between its elements.
In addition C'C'/ is not a Moore family (see definition 1) and cannot be completed by inter-
secting its elements (because of the size of the resulting set). These are good motivations to
introduce a new approximation, the rational sets of I'C', which provide efficient algorithms.
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3. The set IC of interval congruences on Q
The goal of this section is to define a rational model based on the use of a set of rational
arithmetical cosets with consecutive representatives.
3.1. Two equivalent definitions.

DEFINITION 25 (INTERVAL CONGRUENCE [a,b](q)). Let a € Q_.., b € Q; and ¢ € Q be
rational numbers. The interval congruence [a,b](¢q) of lower bound a, upper bound b, and
modulo ¢ is defined by

(a,b] () gt | [a, +oo] U [—00,b] ifa>band ¢=0 (14)
O = {2, Jzs € Qe =ao+ kq, a <2y < b, k€Z} otherwise (15)

1C is the set of interval congruences.

In the following, when we need to consider an interval congruence [a, b] <%>, we implicitly take
non negative integers v and ¢ such that ged (v,6) = 1.
Dually, let us define a set of appropriate congruence equations.

DEerINITION 26 (ARCEBR). Let @ € Q_o, b € Q4. and ¢ € Q. The arithmetical rational
congruence equation with bounded representative

v = [a,b](q)
is defined by the system with the rational unknown =z
\/ r=p0 ifa>band ¢=0 (16)
et f2a,p<b
v =[a,0](q) =
\/ =08 mod (q) otherwise (17)
a<p<h

Let us note ARCEBR the set of such equations.

Clearly, IC' corresponds to the solution sets of the elements of ARCEBR. For example the
interval congruence [2,5](6) corresponds to the solution of the equation x = [2, 5] (6).

THEOREM 27 (REPRESENTATION EQUIVALENCE). The set IC of interval congruences on
Q s the set of the solution sets of the elements of ARCFEBR.

Proor. The natural map from ARCEBR to IC

p : ARCEBR — IC
¢ = [a,6){q) — [a,b]({q)

provides an isomorphism between the solution sets of equations (16) and (17) and expres-
sions (14) and (15) respectively. 0O
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An interval congruence is either an infinitely and regularly dispersed set of rational intervals,
or equivalently a set of rational cosets with “consecutive” representatives; therefore [a,b]
is called the representative of the interval congruence. For any non negative rational ¢,
IC(q) is the set of interval congruences of modulo ¢. Two interval congruences with different
representatives may denote the same rational set.

Notice that the set of interval congruences contains the set of rational cosets (where the
lower and upper bounds are equal) and the set of rational intervals (where the modulo is zero
and the upper bound greater than the lower bound).

An example of such a rational set is given below:

[1 §]<§>_ U [1+5k 3 + 10k
274 \2/ | 2 7 4
€L

and illustrated by

-

1 3
2 3T
1 0 I I
T T T T T

L[]

In the following, we implicitly consider the usual operators on interval congruences of zero
modulo (usual rational intervals) that are the sum, the difference of two intervals and the
product of an interval with a scalar.

The two following lemmas are quite simple to verify.

LEMMA 28 (INTERVAL CONGRUENCE EQUAL TO Q). Let I = [a,b](q) be an interval con-
gruence.

g=0 AN a=-b=-
I=Q < Y
q#0 A b—a>|q

LEMMA 29 (INTERVAL CONGRUENCE EQUAL TO (). Let I = [a,b]{(q) be an interval con-

gruence.
_ q#0
=0 & {b<a

The definition of complementation on interval congruences does not fit with the usual meaning
of a complementation operator because the intersection of an element with its complementary
is not empty. The notion is only used to compare interval congruences.

DEerINITION 30 (COMPLEMENTATION ON IC'). Let I} = [ay,b:] (¢) be an interval congru-
ence. The interval congruence Iy = [as, bs] (q) is called its complementary iff

IlLJIz:Q

and I, N I, is the join of at most two rational cosets of modulo ¢.
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For example, the complementary of [2,5] (29) is [—24, 2] (29) (their intersection is 2 (29) U
5(29)) and the one of [—oo, =] (0) is [+=, +00] (0) (their intersection is % (0)).

’ 43 43

3.2. Comparison on /(. In contrast to C'C, an efficient comparison algorithm is pro-
vided here. Let us first redefine the order relation.

DEFINITION 31 (INTERVAL CONGRUENCE COMPARISON Cy). The comparison relation C,
on IC' is the extension to IC of the partial order relation on P(Q) induced by set inclusion.

Cy is a preorder relation. The following theorem reduces the general comparison to the
particular case where the first of the compared elements is of zero modulo; the next theorem
deals with this special case. In addition to the lemma characterizing interval congruences
equal to Q or to (), they provide an algorithm to compare interval congruences which is
implicitly given here.

THEOREM 32 (COMPARISON WITH NON ZERO FIRST MODULO). Given ¢, # 0 and two in-
terval congruences Iy = [ay,b1] (¢1) and I, = [as, bs] (¢2) neither empty nor equal to Q, I, C; I,
if and only if

G2 =0 A by <az A [by,a2](0) Sy [b1, a1 + 1] (@) (18)
V
az—a; — ba—b1—|go|
02 # 0 A ’Vng(‘hy‘h)—‘ B {ng((h,(h)J + 1 (19)

ProOF. Some points of the following proof, which are very close to the one of the proof of
proposition 23, are not fully explicated.
If the modulo of the second interval congruence is zero (case (18)), I5 is infinite and its
complementary must be in the complementary of I;.
Otherwise, the modulo of the second interval congruence is not zero (case (19)).
Let d = ged (q1,¢2) and ¢, = %-
For all a in the rational interval [a;,b;], the smallest set of rational cosets of modulo ¢,

containing the interval congruence [a,a](q) is

{(a+d){g),(a+2d){g), .. (a4 ¢d) ()}
Hence [a,a] (¢1) Cy 15 is equivalent to
[a,a](d) = U(a +id){q.) C I,
i€l
We follow now a reasoning similar to the end of the proof of the proposition 23 considering
rational instead of integers.

It is equivalent to say that ¢} consecutive representatives of [a, a] (d) are in [as, bs] (recall that
¢hd = |gs|) iff there exists an integer ¢ such that

as < a+d
a+id+ ¢yd —d < by
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and since this system is valid for any rational a in the interval [a;, b;] we get

as < ay +id
by +id + |qo| —d < by

which implies

"a2_a1-‘ _ V)z_bl - |‘]2| _I_lJ

d d
O

Examples

Following the rule (18) [, 2] (2) is less than [2,1](0) as it is pictured by
2o g 5 %
[ 1 0 1 ) [ [ 1 »
R 1T ] T R

1 2

where the big braces correspond to the interval congruence with zero modulo and the small

ones represent the other. When following rule (19), [, 2] (3) is less than [+,3] (2)
13
4

—7 1 3
-2 3 2 4 3

—
il -
—
il -
—
il -

[N [en]

[ [ [ [
—9 -7 =17 —11 =7 -1 b ] ha 19 ba e i 13
1 1 12 2 12 2 4

The following theorem assumes that the comparison of two intervals, both with zero modulo,
is well known.

THEOREM 33 (COMPARISON WITH NULL FIRST MODULO). Given two interval congruences
I = [a1,01](0) and I = [as, bs] (g2) neither empty nor equal to Q, I, Cy I» if and only if

o = 0 A Il gu IQ (20)
\

G2 £0 A =00 <a; by < oo p[Bmn] = | beb] (21)

lgz]

Proor. The comparison of two interval congruences of zero modulo (case (20)) being quite

trivial is not detailed here.
If the greatest interval congruence is of non zero modulo (case (21)), then [, is finite (because
I, is not equal to Q) and in one representative of 5, which results in the existence of an

integer ¢ such that

43]

by + t|qs|

ay + t|qs|
b,

INCIA

and the result follows. O
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Example

[ [ [ [ 1 5
b ] hs 19 23 20 11 s
1 i

T

3.3. Equivalence relation. An algorithm for deciding the equivalence of interval con-
gruences is provided. It does not rely upon the comparison algorithm. Notice the difference
of complexity with respect to the equivalence algorithm on C'C' of theorem 19.

THEOREM & DEFINITION 34 (EQUIVALENCE & ). The interval congruences It+=[ay,b1] (¢1)
and I, = [as,bs] (q2) represent the same rational set (I; Cy I, NI, Cy 1h), noted I =~y I, if
and only if they are either both empty (q; # 0,b; < a; for i € {1,2}) or the set of rational
numbers ((¢; = 0Ab; = —a; = +00) V (¢ # 0N b; — a; > |q;]) for i € {1,2}) or have modulos
with the same absolute value |q| and satisfy by — by = as — ay € {|q1]). =y is an equivalence
relation on I1C'.

Proor. Only the case where both interval congruences are neither empty nor equal to
@ has to be explicated. It is easy to see that, in the other cases, an interval congruence
with zero modulo and one with non zero modulo cannot be equivalent and that the theorem
characterizes the equivalence between zero modulo interval congruences.

Now, suppose we have two non empty, non equal to Q interval congruences with non zero
modulo. They are equivalent if the case (19) of theorem 32 is verified for both I; Cy I, and
I, Cy I, which gives:

s —day [ bz—b1—|(]2|J "al_a2-‘ _ Vl—bz—|(]1|J
[d}‘{TJﬂA d s

where d = gcd (¢1,¢2). Suppose d does not divide ay — a; then”

as — Ay a; — Ao
- 1
e s b

hence

V)z —b;_ |Q2|J $1=— Vh — by — |Q1|J

“A non integer rational number a verifies [a] = —[—a] + 1.
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and there exists an integer ¢ such that

by — by —
i< = LI <it1
by — by —
i< b= b ~ o] <—it1
d
and
by — b
i—1+4q < — <i+ g,
by — b
i—1-¢q, < 2 <i-q
d
where |¢;| = dg| and |¢g:| = dg,. The existence of 2= implies (following footnote 3 on
page 45)
—“l-q < ¢

-1+q¢, < —q

The latter inequality implies that the sum of the positive integers ¢; and ¢/, is less than one
which is impossible. Hence d divides a; — a, and we have

bz—b1—|(]2|J {bl—bz—|(]1|J
_ 1 = - |— -1
{ d + d

and, following the same scheme as above, it is established that there exists an integer ¢ such
that

i—ltg < bR < it
(22)

i—q < Bh < idl-gq
and

- < ¢
—14+q¢, < 1—-¢q

Hence ¢; = ¢4 = 1 and |¢;| = |¢2| = d. The substitution of 1 to ¢; and to ¢} in the system (22)
provides
by — by
d

hence d divides by — b; too. The proof of the equality of the distances separating upper and
lower bounds is trivial. [
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The preceding theorem states that (/C, Cy) is a preorder and we use the equivalence classes on
1C induced by = for the next steps of the construction of our abstraction. Hence from now
on and to avoid notational complications, we note an equivalence class of IC'/4, by one of its
representative and the partial order on IC'/4, by Cy. There is no need here for a normalization
operator as in C'C' because operators on I(' are compatible with the equivalence relation.
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APPENDIX A

Equivalence relation on C'C

Before stating that coset congruences with distinct modulos are distinct, two lemmas con-
cerning the conversion of coset congruences to a new modulo are established. Let us first show
that given a coset congruence of non zero modulo, non empty and non equal to Z, the smallest
(for set inclusion induced order) coset congruence, with a fixed new modulo, containing it,
is equal to Z, if the number of consecutive integer cosets of the initial coset congruence is
greater than the ged of the two modulos.

LEMMA 35 (COSET CONGRUENCE CONVERSION GIVING Z). Let Cy = 6,.[l;,uy] (my) and
Cy = 05.[la, us] (ms) be two coset congruences.

0<u —l+1<|my
w — U+ 1>ged(my,mq) 3 = Cy =17
C; C Oy

ProoF. Let us recall that €' is non empty and non equal to Z and has a non zero modulo.
We are going to show that the smallest coset congruence of modulo m, containing ' is Z.

First 0,0, (my),6,(ly + 1) (my),...,01uy (my) C Cy hence
610, (my) U (L1 +1)(my) U ... U bug(mq) C Cs
Since C5 is of modulo my and by proposition 8 (my) U (ms) = (gcd (my, ms)), then
611 (ged (my,ms)) U 61(l1 + 1) (ged (my,ms)) U ... U b1uy (ged (mq, ms)) C O

ged (6, ged (my,my)) = 1 implies that the left hand side of the latter inclusion is the coset
congruence 6. [y, u;](ged (my,my)) and lemma 17, under the hypothesis u; — [, + 1 >
ged (my, ms), shows that it is Z. O

Now, if we negate the condition comparing the number of distinct cosets constituting the
original coset congruence with the ged of modulos, a lower bound on the number of distinct
cosets constituting the resulting coset congruence is determined.

43
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LEMMA 36 (REPRESENTATIVE WIDTH OF CONVERTED COSET CONGRUENCE). Let C) =
0. [, u] (my) and Cy = 05. [l2, us) (ms) be two coset congruences.

0<u1—ll—|—1<|m1| |m|
ul—ll—|—1<gcd(m1,m2) :>U2—lz+12 72(U1—ll+1)
c,C O, ged (my, my)

Proor. Let d = ged (my, my) and ¢ = %. From the proof of lemma 35 we have

0.1, w]{d) C C,

Since 6. [l1,u,]{(d) is the join of u; —{; + 1 distinct integer cosets of modulo d, each of which
satisfies (for the corresponding integer r)

O,.[r,r]{d) = 617 (ms) U (617 +d)(ma) U (017 4 2d) (ms)
U ... U (bir+ (¢ —1)d) (ms)

where the ¢ single integer cosets are distinct, then 6,.[l;,u,](d) is the join of g(u; — I, + 1)
distinct cosets of modulo my, hence q(uy — I, +1) <us — L+ 1. O

LemMMA 37 (COSET CONGRUENCES OF DISTINCT MODULO ARE DISTINCT). Let Cy =
0. (11, u] (my) and Cy = 5. [l2, us] (m2) be two coset congruences

0<u —L+1<|m|
0<U2—lz—|—1<|m2| = Cl¢02
[ma| # |ms|

[ma | |ma|

Proor. Let q = m m
If uy — 1, +1 > ged (my, ms) lemma 35 shows that the only way for C; to contain C| is to be
Z which is impossible by hypothesis.
If wy — 1, + 1 < ged (my, mg) lemma 36 implies that us — I3 + 1 > ¢o(uy — I3 + 1) and that
w — I+ 12> q(us —ls+ 1) leading to uy — 1 + 1 > q1qo(uy — I, + 1) and ¢4 = g5 = 1 and
finally |m;| = |ms| which is incompatible with the hypotheses. [

and g, =

The preceding lemma is extensible to coset congruences with zero modulos but which are non
empty and non equal to Z'. The following lemma characterizes equivalence between coset
congruences of identical modulo when one of them has its offset equal to one?.

Tt states that two coset congruences non empty and non equal to Z of distinct modulo absolute
value are distinct.

?These coset congruences intuitively correspond to usual integer intervals regularly dispersed fol-
lowing a pattern of length the value of the modulo.
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LevMMA 38 (EQUIVALENCE TO A COSET CONGRUENCE OF OFFSET ONE). Let m be a pos-
itive integer, I, 8 and n three integers such that gcd (6,m) =1 and2 <n+1<|m|—2.

gel{m) A L€ (m)
(23) 6.1, 1+ n](m) = 1.[0,n] (m) < { v
ge—-1(m)y AN le—n(m)

Proor. If 8 € 0(m) = (m) then ged (#,m) = 1 implies |m| = 1 which contradicts the
hypothesis |m| > 4.
If # € —1 (m), we are going to build a one to one correspondence between the n distinct cosets
constituting 6.[l,]+ n](m) and 1.[0,n](m) by identifying the identical cosets. Recall that
8 Z —1, so the cosets of 0. [l,]+ n] (m) are

—l{my,(=l=1)(m),...,(=l—n)(m)

and in reverse order
(=l=n)(m), (=l=n+1)(m),...,~l(m)
The cosets of 1.[0,n] (m) are

0(m),1{(m),...,n(m)

and the only way to build the correspondence between identical cosets is to associate (—I —
n+ 1) (m) to i (m) for 0 < ¢ < n. Indeed, if the correspondence associates (= — n + i) (m)
to ¢/ (m) (with ¢/ — ¢ & (m)), it should associate (=l —n+ i+ k) (m) to (' + k) (m) for n+ 1
consecutive integer values of k which is impossible because it would associate some coset of
one set to some coset that does not appear in the other set. In particular, for ¢ = 0, the
correspondence requires (—{ — n)(m) = 0(m) and [ € —n (m) that provides the result.

Now we can suppose that 8 € 1.[—1,0] (m). It is sufficient to show that 8 ¢ 1.[2, |m| — 2] (m)
and hence the only solution is 6 € 1 (m) and clearly I € (m).

Suppose that 8 € 1.[2,|m|—2](m) (where |m| > 3). Since n + 1 < |m| — 2, the coset
congruence 1.[n+ 1 —6,|m| —2— 6] (m) is non empty. For every value of 6, there exists an
integer k such that n+1—60 <n—14km and |m|—2—6 > km (just applying the definition
of coset congruences to § € 1.[2,|m| — 2] (m)). For that k, we have® [km,n — 14+ km] N [n+
1—6,|m|—2— 6] # 0 hence

M=1.[0,n=1(m)N1l.In4+1-60,)m|—2—0](m) #£0

Let p € M, hence g € 1.[0,n — 1] {m) C 1.[0,n] (m). The hypothesis implies that there exist
k € [l,l +n] and k € Z such that 4 = k@ + km. On the other hand p + 1 € 1.[0,n](m);
similarly there exist x’ € [[,l + n] and k¥ € Z such that p + 1 = k'8 + K'm. We have
k0 +km+1 = r'0 + k'm. Suppose K — ' € (m), then 1 = (v — k)0 4+ (K — k)m € (m)
which is impossible for |m| > 4; hence k(m) # x’(m). Hence at least one of the cosets
k{m) and k' (m) is different from (I + n)(m); first, suppose x # [ + n. Then we have
(p+8)(m) = 0(k + 1) (m) because p = k0 + km and §(x + 1) (m) C 1.[0,n](m) because

3Recall that [a,b]N[c,d] £ D= c<b A d>a
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of kK € [I,l + n — 1] and of the left hand-side of 23. (x + 8) (m) C 1.[0,n](m) contradicts
the choice of p 4+ 8 in 1.[n + 1,|m| — 2] (m) in the definition of M. In second place suppose
k' # I+ n. Then we have (u+ 1+ 6)(m) = 6(x’ + 1) (m) because u+ 1 = x’0 + km and
O(x" + 1) (m) C 1.[0,n](m) because of x' € [I,Il + n — 1] and of the left hand-side of 23.
(p+140)(m) C1.[0,n](m) contradicts the choice of g+ 1+ 8 in 1.[n 4+ 2,|m|— 1] (m) in
the definition of M. The result follows. [

The general case for testing the equivalence of coset congruences of identical modulo is now
provided.

TurorEM 39 (EQUIVALENCE OF COSET CONGRUENCES WITH IDENTICAL MODULO). Let
Cy =6, [, 1] (my) and Cy = 05.[l3, us] (m2) be two coset congruences such that

m = |my| = |ma| # 0
1§w:U2—lz+1:U1—ll+1§m—1
Cy = Cy if and only if

w =
011, = 61,
vV
2<w<m-—2
6, =2 6,
011, = 61,
(24) v
2<w<m-—2
6, = -0,
6,1, = B
vV

w=m-—1
0,(l, — 1) Z 85(ly — 1)

ProoF. The considered cosets are neither empty nor equal to Z.
If w = 1, we have to compare integer cosets which results in comparing their representatives
01[1 and 02[2.

If 2 <w < m— 2, we are going to show that €| &~ (5 is equivalent to

(25) 02_101. [ll — 01_10212, Uy — 01_10212] <m> ~ 1. [0, Uy — lz] <m>

by showing that the equality of the two cosets k16, (m) and k.0, (m) respectively in C; and
in (5 is equivalent to the equality of the two cosets 8560, (k; — 07 '0205) (m) and (kg — 15) (m),
where 7' and ;' are chosen such that 6,67 Z 1 and 6,65' Z 1.

The relation

5101 — 5202 € <m>
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is equivalent to
510102_1 — 520202_1 € <m>
since ged (62, m) = 1, which is in turn equivalent to

"510102_1 — Ry +l— 1y (0101_1) (0202_1) < <m>
S——"

13
113

1 1

and finally
02_101(:‘431 — 01_10212) <m> = (Hz — lz) <m>

which provides equality (25). Since ged (65 '6,,m) =1 and 2 < uy — I, +1 < m —2, lemma 38
provides the result.

If w = m — 1 the problem results in comparing the complementaries of C; and C; (which are
simple cosets) that are respectively 8,({; — 1) (m) and 6,(l, — 1){(m). O

Proor. [of theorem 19] Notice that Lemma 17 (resp. lemma 18) provides the result when
the considered integer set is Z (resp. () and corresponds to case (10) (resp. case (11)).
Suppose that €| and Cy are neither empty nor equal to Z.

First lemma 37 implies that |m,| = |ms| even if m; = 0. In addition, two coset congruences
non empty and non equal to Z with the same absolute value of modulo are equal if and only
if the differences between their upper and lower bounds are equal.

Now, if the modulo is not zero, theorem 39 has to be considered (for one part of case (12)) and,
if the common modulo is zero, then both offsets are one by definition and the representative
bounds have to be equal modulo m (which is indeed taken into account by case (12)). O
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CHAPTER IV

ABSTRACT INTERPRETATION OF INTERVAL CONGRUENCES

This chapter is devoted to the design of some abstract interpretations using the two domains
described in Chapter III. First the connection between these two domains is provided in
section 1; its particular features are expressed in terms of the general abstract interpretation
framework [CC92b]. Then the approximate operators on the abstract domain are determined
together with the widening operator in the section 2. Finally, section 3 provides the abstract
statments and is ended with a complete analysis example.

1. Semantic operators

The concrete domain C'C' and the abstract one IC' are designed in Chapter III; we now bind
them using a pair of abstraction and concretization functions in order to give the meaning of
the abstract elements and to prove that their respective orders are coherent.

1.1. Soundness relation. The definition of a soundness relation formalizes the intuitive
concept that an integer set is well approximated by a rational one if the original integer set
is included in that given rational set.

DEFINITION 40 (THE SOUNDNESS RELATION o). It is defined by

def

o (O 1) e CCJy x ICn,,C C T}

The order relation C used in the definition is simply the usual inclusion between sets. The
soundness relation is implied by the relation {(C,I) € CC/y x IC/x,,a(C) Cy I}; the
reciprocal is false (see in the proof of proposition 47 an example illustrating that (o, ) is not
a Galois connection, i.e. an example of coset congruence contained in an interval congruence
for which its abstraction is not contained in that interval congruence).

1.2. Abstraction. The choice of an interval congruence representing a given coset con-
gruence is formalized by the abstraction function: the chosen abstract element is one of the
minimal approximations of the concrete one. Given one coset congruence, many interval
congruences contain it (they are provided by the soundness relation); there are still many

49
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containing exactly the integers corresponding to the original coset congruence; finally there
are still many of these of minimum representative width (informally the difference between
the upper and the lower bounds).

DEFINITION 41 (ABSTRACTION a). The abstraction function is the following:
a CCly — 1C/4,
0.1 ul(m) — [55,7%] (%)

where 0 < 8=! < |m| is an inverse of § with respect to m and with the convention that the
inverse of 0 with respect to 11is 1.

Following Bezout’s theorem (See footnote 1 on page 25), the abstraction function is always
defined (#~' always exists).

The abstraction could have been defined as a relation if we had not chosen a unique inverse
of § but, since a normal form exists for §=! and is easily computable, we prefer to have a
function. For example a (5.[1,3](9)) = [5,2] () that is represented by

] 1] 1 h]fo 1
T T ] T

T ]

-
o
-+
o

[y 1
[l 1

4

[2,2] (%) is an other minimal interval congruence containing 5. [1, 3](9) and no more integers.

77l \7
It is of course non comparable with [£, 2] (2). This illustrates the lack of a best approximation
of an element of C'C' with an interval congruence. It is optimal if 7 o a is the identity (which

is in fact ensured by theorem 44).

1.3. Concretization. The concretization function associates a concrete element with an
abstract one giving its meaning.

DEFINITION 42 (CONCRETIZATION 7). The concretization function is defined by

Yo IC/zn — CC/z
0, 8](2) {1. [1,0](1) if v =0and b>aand [a] > [b] (26)
TN 6=t [[ad], [b6]](v)]] otherwise (27)

where 7! is an inverse of § with respect to v.

The same remark as for the choice of the inverse of # in the abstraction definition holds here
for the choice of §71, except that all the different possibilities reach here the same element
of CC/s (because of the normalization on C'C') and though there is in fact no choice. We
see that considering rational interval congruences provides a much more powerful description
of concrete properties than only considering integer interval congruences the definition of
which would have been quite similar to the definition 25 replacing Q by Z. This is a direct
consequence of the strict inclusion of these integer interval congruences in IC'. An example
of concretization is:
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1 ([33](3)) = 7o = wonuE o UBEHUEE)

To prove the fundamental property about «, we first need to show a sufficient condition for

two interval congruences to have the same integer subset.

LEMMA 43 (EQUAL INTEGER SUBSET WITH IDENTICAL MODULO). Let v be a non zero po-

sitive integer and I, = [ay, b;] <%> and I, = [as,bs) <%> two interval congruences such that
[a16] < |b16] and Jas6] < |bs6]. Iy and I have the same integer subset if
(25) (8] = [ad] = [016] = [b:6) € ()

ProoF. Theorem 27 associates to I, the equation 2 = [ay,by] <%>, which has the same
integer solutions' as the equation
R
N 6§ 76 6

An equivalent deduction is satisfied for I, and equation (28) proves the equality of equa-
tions. O

For example [£,3] (§) contains the same integers as [, ﬂ (3)
o 1

|8 T

1 [ 1 [
T T 1 T

1 [ 1 [ 1 [ 1 >
T T T T T T T

The next step establishes that the concretization function corresponds to our initial goal to
express the integer subset of an interval congruence.

THEOREM 44 (CORRECTNESS OF 7). The meaning v(1) of an interval congruence I is its
intersection with Z.

VIeICy(I)=1NZ

Proor. We do not have to consider here the normalization step in the concretization
process since it does not change the resulting integer set. Let us consider the different cases
for an interval congruence I = [a,b] (%):

a=bAv=0A [ad] > |b6]: The resulting interval congruence is the interval [a,d]
and since [a] > |b], a € Z and its integer subset is empty.

a<bAv=0A[ad] > |b6]: Since [a] > |b], a and b are two distinct rational num-
bers without any integer between them; the resulting interval congruence is [a, b] (0)
and its integer subset is empty.

L A basic result for solving arithmetical congruence equations states that oz = a mod (g), (o, a,q €

@) has an integer solution if and only if ged (e, ) divides a. |’aé;&‘| is the smallest rational representative
greater than ay for which the preceding property is verified in the equation corresponding to I;. The

symmetrical result holds for %.
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a>bAv=0A [ad] > |b6]: The resulting interval congruence corresponds to [a, 400]
U [—00,b] and its concretization 1.[[a], [b]](0) to [[a],+oc] U [—oo, |b]] which is
exactly the integer subset of [a, +00] U [—o0, b].

v #0A [ab] > |b6]: Lemma 18 proves the emptyness of y([) and definition 25 the
emptyness of I.

[ad] < |b6] Av=0: Then v(I) = ||1.[[a],[b]](0)]|; the concretization is here the
intersection of a usual rational interval with the set of integers.

[ad] < |b6] Av # 0: A direct consequence of lemma 43 is that

InNZ= [@%—‘”K@m%

Then solving the resulting integer congruence equation

(29) b=k mod v A [ad] <k < |bS]

provides an expression of I NZ. The solution set of equation (29) is the union of a set
of cosets with identical modulo v and with representative a particular solution that
is given for example by x¢ = k6 such that 66 € 1 (v) (hence ged(#,r) = 1) which is
exactly the description of v([), the coset congruence of offset 8, lower bound [aé],
upper bound [bé] and modulo v.

1.4. Characteristics of the connection (a,v). Two classes of abstract properties are
first characterized with respect to their meaning, then the structure of the abstraction—
concretization connection is dealt with, which directly results from the fact that our domains
are not Moore families.

PROPOSITION 45 (CHARACTERIZATION OF 7~ (). Let I = [a,b] (%) be an interval con-
gruence. It is empty if and only if

{1/7&0 Voa<b

[a8] > [b4]

Proor. Considering lemma 18, the case (26) of the concretization definition always leads
to the empty integer set. By lemma 18, the case (27) is the empty integer set if and only if
v # 0 and [ad] > |bd].

The last equality directly results from the theorem 44. [

For example [%, 19—7] <§> does not contain any integers, as is visible on

0 1
| n n n n | | >
uj uj uj uj

LI LI LI
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PRrOPOSITION 46 (CHARACTERIZATION OF INTERVAL CONGRUENCES CONTAINING Z). Let
I =[a,b] <%> be an interval congruence. It contains Z if and only if

v=0A [al=1[b]+1 AN b<a (30)
V

a=—00 A b=+ (31)
V

0<v<[b]—[ad] +1 (32)

Proor. Theorem 44 transforms the problem into characterizing vy=*(Z). The final result
comes from lemma 17. OO

For example [=2, 18] (I) and [2,1

5o (3 2 2] (0) contain the set of integers.
These two propositions provide tests on the emptyness and the fullness of the meaning of an
interval congruence which are very frequently used operators in the implementation of the

program analyzer.

PROPOSITION 47 (STRUCTURE OF (a,7)). The pair of maps (a,7) is not a Galois connec-
tion.

Proor. Recall that («,~) would have been a Galois connection if
VO e CC,TelCa(C)S I e CCy)

that is equivalent to stating that for every interval congruence I, a(v([)) = I. However the
coset congruence C' = 5.1, 3](9)
0o 1

is less than (1) = v ([, ] (£)) = 13.[6,17] (18)

1 [ 1 [ 1 [ 1 >
T T 1

is not comparable with I = [2, 2] ({2)

1 [ 1 [ 1 [ 1 [ 1 [ 1 [ 1 >
T T T T T T T T T T T 13 T

which contradicts the Galois connection character of the pair (a,v). O

Hence the usual framework of [CCT77] cannot be used and [CC92b] shall be used instead.

1.5. Normalization on /C. A major consequence of the normalized feature of the con-
crete coset congruences is that v o a is the identity operator. We are now going to consider
the inverse operator a oy as a normalization operator on IC'.



54 IV. ABSTRACT INTERPRETATION OF INTERVAL CONGRUENCES
PROPOSITION 48 (SEMANTIC MINIMIZATION). Let I = [a,b](
containing integers but not Z.
[ [ad] [bd] ] <1/>
b6 6

is the smallest interval congruence with the same concretization and modulo as 1.

%> be an interval congruence

VLGIC(%) VAL NZ=INZ#L = [@,U’T‘”KQQM

Proor. If the modulo of I is zero, the result is easy to get.
Suppose now that I has a non zero modulo and does contain integer elements.
As stated in the proof of theorem 44 the coset congruence 67*.[[aé], [b6]] (v) is the integer
subset of I; it is the collection

5 [ad] (v), 6~ ([ab] + 1) (v), ..., 61 [b8] (v)

of integer cosets, where §=' verifies §='6 = 1. In order to find the smallest rational interval
congruence with modulo % containing this set of integer cosets, let us start by determining

the smallest rational coset with modulo % containing the integer coset 67! ([ad] + 1) (v),

0 < i < [bd] — [ad]. It is easy to see that this rational coset is 67! ([ad] + i) (%), which is

equal® to Iﬂéﬂ <%> Since v 20, INZ # § and I NZ # Z, propositions 45 and 46 imply

0< [b6] —Jadl <v—1
5>)ogig[bq—[aa]

shape of aggregates of [b6] — [ad] 4 1 values separated by 3; the aggregates are separated
from each other with a distance of % following the scheme:

The set of representatives of the cosets of the collection (%< have the

01l

L4
XXX XXXX »l XXX »l XX XX

In order not to add new integer elements to the resulting interval congruence, its representative
should not add other multiples of ; than the ones figuring in the rational coset collection and

hence the smallest interval congruence containing them is [ra;] , %] (). O

This first kind of normalization (not the one that will be finally considered) transforms
[5: 5] (3) nto [5.5] (3)

1 [ 1 [ 1 [ 1 >
T T 1 T T T 1

1 [ 1 [ 1 [ 1 >
T T 1 T T T 1
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We now state that v selects the set of maximal concrete properties with respect to the
soundness relation o, that is here the greatest integer set contained in an abstract element
(which is a coset congruence).

COROLLARY 49 (CONCRETE MAXIMALITY ASSUMPTION). Let I be an interval congruence
and C' a cosel congruence.

ccI
(33) ¢=) &
¥C' e CClx CCC'CT = ("CC

ProoF. It results from the definition of v as intersection with Z. O

In order to provide a unique representation of semantically equivalent abstract properties, a
normalization is introduced.

DEFINITION 50 (NORMALIZATION 7). Let us define the normalization operator 1 on IC'/,
by
n=aoy

The normalization operator replaces an abstract property by a more precise one or by a
non comparable one, but without increasing the accuracy of the corresponding concrete el-
ements. If the result is smaller than the original interval congruence, then the analysis will
be more precise and, if it is non comparable, the experimentation justifies the use of such a
normalization in practice. For example

([33](5) = naon=[3:5] (5)

graphically the interval congruence

3 5 57 71 93 107 129 143 165 179
4 4 28 28 28 28 28 28 28 28
0 [ 1 [ 1 [ 1 [ 1 [ i
T T T
is transformed into
1 3

0 [ - 1 [ ] -

|8 T |13 T

The rational intervals not containing any integers have been removed by the normalization
and the modulo has increased; this is the consequence of two processes that are part of n:
the narrowing of interval bounds in order for these bounds to be in rational cosets containing
integers (see proposition 48) and the choice by the normalization on C'C of a particular offset
(hence the increase of the modulo).
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2. Abstract operators

The goal of this section is to deal with the operators on the abstract domain that are
needed for the analysis. Exact meet and join algorithms are not definable since IC' is not a
complete lattice, hence only safe approximations of them are defined.

2.1. Conversion. As is illustrated below in the definition of the approximate join oper-
ator the only really needed conversion consists in finding the smallest interval congruence of
I1C(q) containing a given interval congruence when the new modulo divides the one of the
original congruence. For reasons that appear in the approximate join definition, the result of
a conversion operation must have the new modulo (even in the degenerate cases).

DEFINITION 51 (CONVERSION TO A DIVISOR OF THE MODULO Conv). Let ¢’ be a ratio-
nal number and I = [a,b](g) an interval congruence such that ¢’ divides ¢. The conversion
of I to modulo ¢ is defined by

Convq, (I) def {[a,a—|— (]/] <(]/> ifb<aand ¢ =0 and ¢ 7§ 0

[a,b](q") otherwise

This conversion algorithm is optimal in the sense that it gives the smallest interval congruence
containing the original one and of given modulo.

2.2. Join. The goal of this section is to find an algorithm that determines, given two
interval congruences, a minimal element containing both of them. If they are comparable,
the problem has an optimal solution and will not be considered. Otherwise the interval
congruences are converted to a common modulo and two different possible upper bounds are
compared using the accuracy function ¢ on their meaning. Hence the main question is to find
a minimal upper bound for two interval congruences with same modulo. Only one particular
case (the interleaved relation (34)) leads to two non separable solutions and is arbitrarily
solved at implementation time. The resulting join operator is not associative and a slightly
different solution® to that latter problem would provide a commutative union but with a loss
of information.

Join with constant modulo

The interleaving of two interval congruences expresses the impossibility of finding a unique
interval congruence containing the first one with the same common modulo and of minimal
representative width (try and apply the definition below of interval-like join to one of the
above examples of interleaved interval congruences).

3Just taking the optimum of IC' to approximate this kind of union.
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DEFINITION 52 (INTERLEAVED ]). Two interval congruences I} = [ay,b](¢:) and I, =
[as, b2] (g2) are said to be interleaved, noted I, 115, if they have the same modulo ¢ = |¢1| = |¢2]
and

q:0/\bz<a1§b1<a2/\a1+b1:a2+b2 (34)

V

q#O A 0§b1—01<q A 0§b2—02<q A az,b2€11

/\Ilgulz/\bz—alébl—az (35)
V

I, 1

For example [3,4](7) and [6,8](7) are interleaved following the scheme of expression (35)

[ T S T SR L S T S B

L 1 L B L 1 L B L 1

stating that the two interval congruences of non zero modulo are neither empty nor @, have
no common elements and that, given one representative of one of them, the two nearest
representatives of the other are at the same distance from the first one.
On the other hand [5, —3](0) is interleaved with [—1,3](0) following the scheme (34)
o 1

1 r 1 I >
1 L 1 T

stating that the first interval congruence with zero modulo is finite when the later one is
infinite; they have no common element and their bounds have the same center.

DEFINITION 53 (INTERVAL-LIKE JOIN U; 7). Given two non interleaved elements I; and I,
of 1C(q), their interval-like join I, Upy I, = [v,7']{(¢) is an interval congruence of modulo
g containing I} and I, and of minimal value of the difference between its upper and lower

bounds. "
K 2 I Uy 1o -
WK =ledgerc d ngk 4o {DELIE
I, G K T

Since when considering all the particular cases of interval congruences the only ones not
providing a unique interval-like join as defined above are the interleaved ones, Uy : 1C(q) x
1C(q) — 1C(q) is well defined. The existence of the interval-like join is proved by the
algorithm given in appendix B.

Join to a divisor of the modulo

An alternative to the interval join Uj j naturally defined for two interval congruences of same
modulo is the congruence join U that first converts them to a divisor of the modulo following
the definition 51 and then makes an interval join. The new modulo is chosen such that the
converted representatives overlap.
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DEFINITION 54 (CONGRUENCE-LIKE JOIN U ). Given two non comparable interval con-
gruences I, = [ay,b](q.) and Iy = [az,bs] (¢2) of same modulo ¢ = |¢;| = |¢gz2|. Let r be
the divisor of ¢ that is the smallest rational closest to the distance d between I, and I,
representative centers. The congruence-like join I, U Iy is [—o0, +00] (0) if d is zero; it is

defined by

LU L% Conv, (1) Uy Conv, (1)
if the negation of the interleaving condition (34) (¢ #0 V ay < by V b < a; V a3 <
by V ay + by # as + by) is verified and otherwise [ay, by] (0) or [as, b,](0).

The concept of distance between two representatives denotes the smallest distance consid-
ering all possible representative pairs. Notice that if at least one of the interval congruence
representative widths is infinite then the congruence-like join of the two interval congruences
is [—00, +00] (0) so that the mentioned distance between the representative centers is chosen
as we want.

This kind of join is a good alternative to interval-like join for the case where the interval
congruences are interleaved following expression (35). The only case we are not able to deal
with is the interleaving of expression (34) where the exact join of interval congruences is
approximated either by [ai,bs](0) or by [as,b,](0) with the same precision. The following
examples can be considered:

(36) 3, 4] (v 5,6](7) = Eg]<£>

=
y

S .

=
y
4

-1
[ -
-
[ -
-
o
[ -
-
[ -
-1
[ -
-
[ -
-
[ -

(37) [3,4](7) L. [6.8](7) = [2 2] <;>

=
y
4

=
y.
Y.

-
o
~—
=
A 2
-
o
~—
2
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when
(38) [3,4](7) U1 [6,7](7) = [3.7](7)
[ 1 0 - [ 1 >
U
[ b - [ ] -
[ b _ [ ] -
(39) [3,4](7) U1 [5,6](7) = [3.6](7)
[ 1 0 - [ 1 >
U

[ ] 0 > [ ] >
1

L T L
Intuitively comparing the examples (36) and (39), the interval join seems to be more adapted
to this case, while comparing the examples (37) and (38) the congruence join seems to be
closer to the exact join on rational sets. It is clear that no optimal join exists for the four
examples considered above.

Precision abstract order

An operator | is introduced that estimates, given two interval congruences, which one is
the most informative of the two, in other words, which one contains the smallest density of
integers. It is naturally defined using the accuracy function on coset congruences ¢.

DEFINITION 55 (CHOICE |). Given two interval congruences [ and J, the result [ | J of
the choice between I and J is one having the smallest value by ¢ o+.

EIEASEREIE
G - ooaw

t(5.14,9](9))

For example

since

o w

-~
TN
-2
TN
| p— |
\'[\')
N | ©
P
N | ©
\/
N
N
[l

Wl N
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The reader can easily see that this precision order confirms the intuitive preferences between
interval and congruence-like join at the end of the preceding paragraph.

Approximate least upper bound
Finally we get the following approximation of the least upper bound operator (the one defined

on P(Q)) on IC:

DEFINITION 56 (APPROXIMATE JOIN U). Given I} = [ay, b1 (¢1) and [y = [as, bs] (g2) two
interval congruences, their approxzimate join I; U I, is equal to

I it LC I
else I, it L G I
else I1U. I if L1

dlse (I UryI3) | (I U, I3)

where I{ = Convyeqq,,4.)(41) and I} = Conveeq gy ,0.)(L2)-

Of course, it is possible to refine this definition, especially in the case where the choice between
the congruence and the interval joins is arbitrary (the accuracy of their concretizations are
equal).

Let us look at a necessary refinement of the least upper bound that has to do with the
initialization of the iteration process during the analysis. During the analysis of the program

x := 1;
{1:} while true do
{2:%} X = x + 3;
{3:} od;

{4:}

it is determined at the first iteration and program point {2:} that x may be equal to 1, the
second iteration indicates that x may be equal to 1 or to 4 hence resulting in the abstract join
of [1,1](0) and [4,4](0). Following our definition, this join result in [1,1](3) and corresponds
to what we expected. Nevertheless, it might be not always the case that the approximate join
determines at the first iteration which of the two strategies is preferably chosen. The solution
is to keep during a small number n of iterations the two join alternatives and then choosing
among the resulting 2" interval congruences with the choice operator.

2.3. Intersection. The goal of this section is to find an algorithm that determines, given
two interval congruences, a minimal element containing their exact intersection. If they are
comparable the problem has an optimal solution and will not be considered. Otherwise
the interval congruences are converted to a common modulo and two different possible upper
bounds are compared using the accuracy function ¢ on their meaning. Hence the main question
is to find a minimal upper bound of the intersection of two interval congruences with same
modulo. Only one particular case (the overlap relation (40)) leads to two non separable
solutions and is arbitrarily solved at implementation time. This approximate intersection
operator is not associative and a slightly different solution? to that latter problem would

4Just taking the optimum of IC' to approximate this kind of intersection
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provide a commutative intersection but with a loss of information.

Intersection with constant modulo

The overlapping of two interval congruences expresses the impossibility of finding a unique
interval congruence contained in the first ones with the same common modulo and of minimal
representative width.

DEFINITION 57 (OVERLAP ~). Let I} = [ay,b1]{q1) and Iy = [as,bs] (q2) be two interval
congruences, I, and I, overlap, which is noted I; ~ [, if they have the same modulo ¢ =

lq1| = |g2| and

q:0/\bz<a2§b1<a1/\a2+b1:a1+b2 (40)
vV

q#O A 0§b1—01<q A 0§b2—02<q A az,bQEIl

/\Izgull A bz—azzbl—al (41)
vV

I~ 1

For example [0,5](7) and [4,9](7) are overlapped following the scheme of expression (41)
0o 1

[ [ 1 [ 1 [ 1 [ 1
r T 1 [ 1 I 1 [ 1

stating that the two interval congruences of non zero modulo are neither empty nor @, have
common elements and that each representative of one of them intersects two distinct represen-
tatives of the other one. On the other hand [—1, —5](0) is overlapped with [5,1](0) following
the scheme (40)

0 1
1 r ] [ -
T T 1 T

stating that the two interval congruences with zero modulo are infinite, their join is Q and
have the same representative width.

DEFINITION 58 (INTERVAL-LIKE INTERSECTION M 7). Given two non overlapped non com-
parable elements Iy and I, of IC(q), their interval-like intersection I, T 11, = [v,7] (¢) is an
interval congruence of modulo ¢ containing the elements common to I; and I, and of minimal
representative width v — ~.

K & I Ny 1, -
C
VK =lecgerc Ko g {DS0T0E
KC 1l T

Since when considering all the particular cases of interval congruences the only ones not
providing a unique interval-like intersection as defined above are the overlapped ones, My :
1C(q)x1C(q) — IC(q) is well defined. The existence of the interval-like intersection is proved
using its defining algorithm given in appendix C.
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Intersection to a divisor of the modulo

An alternative to the interval intersection M naturally defined for two interval congruences
of same modulo is the congruence intersection M that first reduces the representative safely
with respect to the exact intersection and then makes a congruence-like join which is safe
with regard to exact intersection too.

DEFINITION 59 (CONGRUENCE-LIKE INTERSECTION M ). Given two non comparable in-
terval congruences Iy = [ay,b,]{(q1) and Iy = [as, bs] (¢2) of same modulo ¢ = |¢;| = |¢2|, then
the congruence-like intersection M is defined by

LN I ar, b (g) U [as, b (g)

where b (resp. b)) is the smallest element of {b; + k¢, k € Z} (resp.{bs + kq,k € Z}) greater
than ay (resp. ay).

Like the interval-like intersection, the congruence-like intersection is a safe approximation of
exact set intersection.

This kind of intersection is a good alternative to interval-like intersection for the case where
the interval congruences are overlapped following expression (41). The only case we are not
able to deal with is the overlap of expression (40) where the exact intersection of the interval
congruences is either approximated by [as, bs] (0) or by [a;,b,](0) with the same precision.
The following examples are considered:

[2,6](7) ... [12—1 10] (7)

(
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[ ] [ ] o > [ ]

C T T T T T

provides only an approximation of the intersection on PP(Q), while

.
i
4

[3,51(7) My [4,6](7) = [4,5](7)

=
y
4

=
y
4

[ ] 0 -
L

T

-+
i
4

corresponds to the exact intersection and hence is optimal.
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Intuitively, the purpose of defining such intersection algorithms is to provide a more accu-
rate approximation than just choosing one of the original interval congruences. As for the
join operator, the two algorithms are complementary and are used in different situations (us-
ing the non adequate algorithm on the examples given above would only result in a loss of
precision on the result).

Approximate greatest lower bound
Finally we get the following approximation of the greatest lower bound operator (the one

defined on P(Q)) on IC":

DEFINITION 60 (APPROXIMATE INTERSECTION ). Let I1=[ay,b]{(q) and [,=[as, bs] (¢2)
be two interval congruences. Their approxzimate intersection I N I is equal to

I it I, Gy I,
else Il if Il gu Iz
else 111 I if I} ~1

else (LML) (LN L)L |1
where I = [a1 + k1g1, 01 + (k1 + 11 — 1)) (q) and I}, = [as + kaqo, ba + (ks + 1o — 1)g2] (¢) and

q = lem(qr,¢2) = lhqr = laqa, ki and ko are integers minimizing the value of |a; + by — as —

by — i + ¢ + ¢+ 2(k1qr — ko).

The rather complex choice of I] and I in the last definition simply is the expression of the
conversion of I; and I, to a common modulo lem(q,¢s) where the distance between their
representative is as important as possible (hence the minimization of |a; + by — as — by — 1 +
¢ + g+ 2(k1q1 — kago)]).

Of course, it is possible to refine this definition, especially in the case where the choice
between the operands, the congruence and the interval intersections is arbitrary (the accuracy
of their concretizations are equal).

2.4. Widening operator. Recall from [CC92b] that the three uses of widening operator
are the following:

(1) A sound choice function, that is if a concrete property is soundly approximated by
many abstract values the widening operator discriminates between all possibilities,

(2) A way to ensure convergence,

(3) An accelerator to guarantee rapid termination of the iteration process for fixpoint
computation.

The first feature is part of the definition of the abstraction function a when the two last ones
are explicated in the following operator derived from the widening operators on interval [CC76]
and rational arithmetical cosets [Gra91a].
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DEFINITION 61 (WIDENING V). Let I} = [ay,b1] (¢) and I; = [as, bs] (¢2) be two interval
congruences. Their widening I, VI, is defined by

[fatlet Latlib ey if g =gy =5 £0 (42)
[as, as + ¢2] (g2) if 0 #q@#0 (43)
[, 5] (0) if ¢ =4=0 (44)
’ by > a; N by > as
Lul, otherwise (45)
where if @ < a1 then a = —oc else ¢ = a4 and if b; < b, then b = +00 else b = b;.

Notice that in order to be more precise than a sign analysis, the widening on two finite
rational intervals only has to jump to zero before extrapolating the infinite values if the
infinite extrapolation value is not of the same sign as the original one. This additional feature
does not figure in the widening definition as a matter of simplification.

The correctness of V is a direct consequence of the correctness of classical widenings on
intervals (case (44)) and rational arithmetical congruences (case (43) where moreover a par-
ticular interval congruence representing Q is chosen for technical reasons). In addition, it is
sufficient to remark that

- the situation where ¢; is zero and ¢, is not (case (45)) has not to be considered since it
cannot take place in an infinite increasing chain: an interval congruence of zero modulo
must be of infinite width in order to be greater than an interval congruence of non zero
modulo which in turn is greater than an interval congruence of null modulo only if
the latter one is of finite width. Hence an infinite increasing chain containing interval
congruence of null modulo will necessarily contain two consecutive such elements.

- in the case where the two original interval congruences have the same non zero modulo
(case (42)), the widening ensures convergence in finite time by embedding the repre-
sentative in a new one adding integer cosets in the corresponding coset congruence
hence accelerating the termination of the iteration process.

First recall the classical widening operator used on intervals with the following examples:

2,3](0) V [2,7]{0) = [2,40c](0)
[3,10](0) V [1,10](0) = [0,10](0)
[~10,-3] (0) V[~10,3](0) = [-10,+00](0)

Then the congruence-like behavior of our widening operator is illustrated by:

(=) 5] = [53] 0~ el 0)
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and finally the last kind of widening process (apart from the approximate join operator) is

T sk - ke

0 1
[ 1 [ [ [ ] [ 1 [ [ [ ] [ >
1 1 1 1 1 1 T+1 1 1 1 1
A%
0 1
1 1 1 1 rJ 1 1 1 1 - 1 >
1 1 1 1 1 1 1 1 1 T 1
0 1

[ 1 [ 1 [ 1 [ 1 [ 1 [ 1 [ 1 [ 1 [ 1 [ 1 [ 1 >
r T T T T 1 T T T T T T T T T 1 T T T T T T

where at most three more applications of V lead to an interval congruence containing Z (look
at the respective meaning of the originals and resulting interval congruences).

The widening operator is improvable by a slight modification of case (42). Instead of
widening both of the interval bounds, the operator might modify only one of them; this
is especially recommended when the other bound is the same in [; and in /,. An other
alternative to case (44) is enabled by the duality of the interval congruence model. Indeed,
instead of keeping a zero modulo, a non zero is possibly introduced depending on program
parameters.
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3. Abstract primitives

Defining first abstractions of integer sum and product by a constant allows us to deal with
assignments of affine expressions to integer variables. Then abstracting a given class of tests
gives the possibility to take into account control flow information in the analysis. The entire
design of an abstract interpretation requires also the definition of backward abstract primitives
to deal with backward analysis and improve the accuracy of the resulting combimation of
forward and backward analyses. Those primitives are easily deduced from their interval and
congruence counterparts.

The following abstract primitives are chosen to be sound, i.e. if I’ is the concrete primitive
and ¢ the abstract one, we have F* < yo¢oa.

3.1. Abstract sum.

DEFINITION 62 (ABSTRACT SUM ). Let [ay,b1] (q1) and [as,bs] (g2) be two interval con-
gruences, their abstract sum, noted [ay, ] (q1) & [az,bs] (g2), is [1,0] (1) if the concretization
of one operand is the empty set and otherwise is defined by

{ n(lar 4 as, b1 + b2 (ged (g1, 42)))  if ¢ #0Voa; <b;, i€ {1,2}

[0,0](1) otherwise

ProovF. [of the soundness of &] We need to prove that the abstract sum is safe, that is for
every interval congruence I; and I,

() + (L) Sy D 1)

The result is trivial either if an operand has an empty meaning or if at least one operand is of
null modulo with its lower bound greater than its upper bound. Suppose we are not in this
case and show that

L+ L CL O

x, € I, (resp. x5 € I,) if and only if 1 = a; + kiqy (resp. @3 = as + kaqo) where a; <
a; < by and ky € Z (resp. ay < ag < by and ky € Z). Hence 2y + 23 = a; + as +
(krqi + kagb) ged (g1, q2) where qu = ¢fged (q1,¢2) and g2 = ¢4 ged (g1, ¢2). The mentioned
inclusion of interval congruences follows. Then we have (I; + [,)NZ C (I, & I,) N Z and
since (I1 NZ)+ (IsNZ)C (I + 1) N Z and 7 is the intersection with Z, the correctness is
established. [

Notice that the definition of abstract sum is commutative which seems natural; unfortunately
the abstract sum is not exact, i.e. generally Iy + I, C I) ¢ I, and I; & I, is not the smallest
interval congruence containing Iy + I5; Generally, the smallest interval congruence containing
I, + I, does not exist.
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Examples
First illustrating the else branch of the definition, take

2, —2](0) @ [4,7](54) = [0,0](1)
Then an example of non zero modulo sum

22 ons [t en-o((0] ) -na

where it is visible that normalizing the operands before doing the abstract sum would have led
to a more precise result ([1,4](7)) by not accumulating “errors” on the bounds of the interval
congruences. That is why the results of the abstract statements (abstract expressions) are
normalized.

3.2. Abstract product by an integer.

DEFINITION 63 (ABSTRACT PRODUCT (). Given an integer A and an interval congruence
I = [a,b]{(q), their abstract product is [1,0](1) if the meaning of I is empty and otherwise

7 (A, A (Ag))  if A >0

A© [a,b](q) f{[0,0]<> if A=0
n([Ab, Aa](Ag)) if A <0

Proovr. [of the soundness of ©] We need to prove that the abstract product is safe, that
is for every interval congruence I

Axy(I)CTH(AeT)

Cases where A is zero or where the interval congruence meaning is empty are straightforward.
Suppose I = [a,b]{(q) and A is strictly positive (and v(I) # 1.[1,0](1)), then A« ([a, ] (¢))
is equal to [Aa, Ab](Aq) and Axy([) = A+« (I NZ)C (A*xI)NZ = v(n([Aa, Ab](Ag))), since
yon=(yoa)oy=+. The case where A < 0 has a similar solution. O

Examples

-2 © [—00,5](0) = [-10,400] (0) while 2 ® [2,4](6) = [4, 8] (12).

Other arithmetical abstract primitives could be defined such as product by a rational, modulo
and euclidian division. But since only very special cases would lead to accurate results® and
the other cases would be long, simple and not very useful (in a first approximation) to define,
they are not given here.

SThink of [a,b](¢) amod r where amod is the abstract modulo function and r divides ¢, then
[a, ] {0) is a good approximation of the exact result.
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3.3. Abstract test. The definition of the abstraction of the test statement is usually
divided into two steps. First tests involving conditional expressions expressed by the approxi-
mate invariants of the analysis (here interval congruences) are considered. Then more general
conditional expressions are safely approximated and the first step is applied.

DEFINITION 64 (ABSTRACT TEST WITH AN ARCEBR conbpITION). Let I = [a1,b1] (q1)
be an abstract context preceding a test with the condition equation @ = [as,bs] mod ¢,. The
abstract entry context in the true branch of the conditional is

I, N Jas, ba] (g2)

while the abstract entry context in the false branch of the conditional is

L a(y([as, bo] {g2)))

Proovr. [of the soundness] Since for all interval congruences I and J in CC, InJ CInJ

and 7(1)N3(J) = (INZ)n (a((7) N 2Z) € (INaG)) Nz = (INaG(]), this

abstract test is correct. O

Notice that the test condition is easily extended to an equivalent linear equation by first
approximating it with an arithmetical rational congruence equation with bounded represen-
tative.

A major improvement with respect to the existing analyses using congruence properties on
integers is that the negation of the natural condition (here an arithmetical rational congruence
equation with bounded representative) is also quite natural. Recall that the meaning of a
rational interval congruence is its integer points.

3.4. Precision ordering with the related analyses. Though the operators on the set
of interval congruences are inspired by the corresponding ones on the lattices of intervals and
cosets, the resulting analysis is not comparable with these two. Let us have a look for example
at the approximate join operator. On the example

[2,41(0) U [3,6](0) = [2,6](0)

the join operator has the same behavior as (is as precise as) the one of the lattice of intervals
while on the example

[—4,=3](0) U[3,4](0) = [3,4](7)

they are clearly non comparable ([—4, —3] U [3,4] = [-4,4]). The same feature results from
the consideration of the example

[0,0](20) U [4,4] (29) = [47 ?] <?>

the concretization of which is 21.[28,29](29) which is more precise than Z (the result of the
application of the join operator on integer cosets) while

[0,0](30) L [12,12](30) = [0,2](10)
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which is clearly non comparable with the result of the same operation on the lattice of integer
cosets. The same kind of behavior results from the definition of the other abstract operators
and abstract statements.
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TaBLE IV.1. Example of iteration process

:= Alx+1,y+1] + A[x+2,y+2];

1= 3%i;
if even(i) then
1= 3%1 + 1

1= 3%1 + 3

= 0;
y

else
y

endif;

Alx,y]

while test_on_i do
X

endwhile;

i
The analyzed program, instead of being very complex or requiring all the subtilities of the

interval congruence analysis, illustrates the basic idea of our analysis. The exact information

where i,x and y are integer variables, A an array of dimension 2 and test_on_i a boolean

expression that is not taken into account by the analysis.
to approximate in this program is congruence like, but not quite, since the test inserted in

3.5. Example. Let us consider the following program

{1:}
{2:}
{3:}
{4:}
{5:}
{6:}
{7:}
{8:}
{9:}
{10:2}
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the loop makes it fail; only interval congruences can take this information into account.

The iteration process is summarized in table IV.1. In this table : (I, X,Y) at line {n:}
and in column “i th jteration” stands for: during iteration i at program point {n:} the values
of i, x and y are approximated respectively by the integer sets I, X and Y. The safe static
approximation is given in the last column where the fixed point is reached. Fach element
of the represented tuples stands for the meaning uniquely associated with the corresponding
abstract interval congruence in the iteration process. The normalization operator is essential
here to describe the analysis results.

The iteration starts without knowing anything about the variables as it is stated in the
“initially” column. Then the abstract primitives and the widening are used to determine
the other columns values. Notice that the congruence behavior of the widening is preferred
at point {2:} (it detects that {i} is in fact the loop index) when the interval behavior is
preferably chosen at points {8:} and {10:}. The fourth iteration giving the same results as
the third one (telling the analyzer that the fixpoint is reached) is done by the analyzer but is
not represented here.

The important result of analyzing this program with interval congruences is that the three
references to the array A are shown to be independent. It is easy to see that

1.[0,0](3) x 1.[0,1](6) N 1.[1,1](3) x 1.[1,2](6) = 0
1.[0,0](3) x 1.[0,1](6) N 1.[2,2](3) x 1.[2,3](6) 0
L[1,1)(3) x 1.[1,2](6) N 1.[2,2](3) x 1.[2,3](6) = 0
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APPENDIX B

Interval-like join algorithm

Given I} = [ay, 1] {(q) and I3 = [as, b2] (¢) two non interleaved non comparable interval con-
gruences, their interval-like join is determined as follows:

if ¢ = 0 then
if a1 < by then
if as < by then [min (a1, a2), max (b1,2)] (0)
else
if by < b1 < as then
if a1 S bg then [ag,bl] <0>
else
if ap — b1 > a1 — by then [ag7 bl] <0>
if ap — b1 < a1 — by then [al, bg] <0>
if by > ag then
if a1 < by then [—o0, +00] (0)
else [a1,b2](0)
else
if az > by then call the algorithm with permuted parameters
else
if ag < by then [—o0, +00] (0)
if b1 < as < ay Abs < b1 then [a2761]<0>
if az > a1 then
if b1 < by < a1 then [al, bg] <0>
if by > a1 then [—o0, +00] (0)
else
if an € I then
if by € I then [a1,a1 + q] (g}
else Uy
else
if b5 € I then U,
else
if 1(U)
if 1(U)

(Ug) then U2

>
< I(Ug) then Uy

where Uy, = [ay, mingez{b2+ kg > a1}]{(¢) and Uy = [as, mingey {by + kg > a2}](q) and
[([a,b](¢)) = b — a. Notice that all the missing cases correspond to comparable or inter-
leaved interval congruences.
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APPENDIX C

Interval-like intersection algorithm

Given I} = [ay,b1]{(q) and I3 = [as, bs] (¢) two non overlapped non comparable interval con-
gruences, their interval-like intersection is determined as follows:

if ¢ = 0 then
if a1 < by then
if az < by then
if max (a1,a2) < min (b1,b2) then [max (a1,a2), min (b1,52)] (0)
else [1,0] (1)
else
if by < b1 < as then
if a1 S bg then [al,bg] <0>
else [1,0](1)
if by > ag then
if a1 S bg then Il
else [az,b1](0)
else
if az > by then call the algorithm with permutted parameters
else
if ao S bl then Il l IQ
if b1 < as < ay Abs < b1 then [al,bg] <0>
if ag > a; then [asz,b1]{0)
else
if an € I then
ifby € I; then I | I
else Uy
else
if b5 € I then Uy
else [1,0] (1)

where U; = [ay, minger {b2 + kg > a1 }] (¢) and Uy = [as, mingez {b1 + kg > a2}](¢). Notice
that all the missing cases correspond to comparable or overlapped interval congruences.
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78



CHAPTER V

DESIGN OF A RATIONAL RELATIONAL MODEL

The analysis of trapezoid congruences requires two different domains: a first one of integer
properties, for precision, and a second one of rational properties, for the efficiency of its
basic algorithms. Although the relational coset congruence domain is presented before the
trapezoid congruence one, we see in Chapter VI that the integer relational coset congruences
are naturally deduced from the rational trapezoid congruences. The content of this chapter
and the next one corresponds to a revision of [Mas92].

1. Notations

The notations of Chapter II are used. In addition, we need to extend some notations to
rational intervals.

DEFINITION 65 (RATIONAL INTERVAL LINEAR COMBINATION). Let [} = [ay,b;] and [, =
[as, bs] be two rational intervals of possibly positive infinite upper bound and possibly negative
infinite lower bound and p a rational number. The sum of intervals, their product and sum
with a constant are defined by

p+ 1 déf[a1‘|',07b1-|-,0]

pxly [pai, pbi] if p > 0
[pbi, pai]  otherwise

L+ o (a1 + a2, b1 + bs)

The dot product is extended to deal with vectors of rational intervals

[alvbl]
[az, bs] def
(P15 P25+ s Pn)- : = pr#fay,bi] 4 po*[ag,bo] 4 -+ py o+ [an, by]

[, b,]
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2. The set RCC of relational coset congruences on Z"

The relations we are now interested in correspond to a generalization of both relational
arithmetical cosets and integer trapezoids (a special case of polyhedron corresponding to a non
singular! system of linear inequations of the form AX < b A a < AX). An integer trapezoid is
a set of relational arithmetical cosets of zero modulo and consecutive representatives. Hence,
the following model consists in sets of relational arithmetical cosets of identical modulo and
consecutive representatives. It is designed so to be the intersection with the set of rational
tuples Q™ of the rational model of trapezoid congruences which is provided in section 3.

2.1. Definition. The notion of coset congruence is generalized to Z”. In fact only the set
of coset congruences that are not a complementary of a finite interval is generalized.

DEeriNITION 66 (LCCE). Let 0.[l,u](m) € CC/~ be a normalized coset congruence and
(61,09,...,0,) € Z", such that gcd(éy,062,...,0,,m) = 1. The Linear Coset Congruence
FEquation (LCCE)

0121 + bsxa+ -+ bpx, = 0.1, u] (M)
is defined by the linear congruence equation system with integer unknowns

\/ 6121+ 6sx0+ -+ 0,2, = 05 mod (m)

I<r<u

Notice that, excepted when the modulo of the linear coset congruence equation is zero, the
complementary of its solution set is the solution set of the LCCE with the same linear coeffi-
cients and the complementary of the initial coset congruence. When the modulo of the LCCE
is zero, the only cases for which the set of LCCEs solution sets is closed under complementa-
tion are the cases where they are empty, equal to Z"”, or half spaces.

It is possible to extend the preceding definition since the choice of coefficients of the equation
prime with the modulo of the LCCE can be omitted (and the division of the whole equation
by ged(6y, 65, ... ,8,, m) provides an equivalent equation satisfying the primality condition?).

Now we are able to define our relational concrete model.

DEFINITION 67 (RELATIONAL COSET CONGRUENCES). The solution sets of LCCEs non-
singular systems are called Relational Coset Congruences of Z". The set of Relational Coset
Congruences is noted RC'C.

A relational coset congruence is represented on the figure V.3. It corresponds to the relational
arithmetical cosets (2)(? g>(270) and (3)(? g>(270) and to the single LCCE z —2y = 1.[2, 3] (6).

Now, we are going to build the parametric representation of relational coset congruences
up to now equationally defined. For that purpose we start by intersecting solution sets of

!Recall that a non-singular system of linear equations AX = b is such that all the rows of A are
linearly independent.
2See the proof of the theorem 90 for the whole process of division.
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FicurE V.3. Relational coset congruence.

LCCEs. The first step of the intersection process considers a special kind of LCCE in which
one operand of the intersection is a rational linear congruence equation. Then we expect to
generalize to general LCCEs. A direct extension of the proposition 13 deals with LCCE and
follows.

ProrosiTiON 68 (LCCE IN A cOSET OF Z"). The solution set of the LCCE

(46) 121+ bsxo+ -+ bz, = 0.[,ul(m)
in the coset A(M), ) is
U (A+ 8k = (81,060,...,8,). A) MB) (MN),,
I<r<u
where B(N), o) is the solution of the LCCE
4]
Y2
(47) (61,00,...,0,)M | . = 1 mod (m)
Yp

in ZP if the equation (47) has a non empty solution set. Otherwise, the solution set of
equation (46) is empty.

Unfortunately, we did not find an algorithm to solve a LCCE in the solution set of an LCCE in
Z". Hence we do not provide a parametric representation of the relational coset congruences
by incrementaly solving the LCCEs in the solution set of the preceding ones (the principle of
that method is detailed in section 3.3 and provides a parametric representation of trapezoid
congruences given an equational representation). But following [Gra9la] we have a good al-
gorithm to solve a relational coset congruence when all the coset congruences of the LCCls
are reduced to single cosets. No extensions of that algorithm seem to be able to deal with
general relational coset congruences. Hence the only solution in order to give a parametric
representation of a general coset congruence is to enumerate its constitutive cosets, each of
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which corresponds to one linear congruence equation system. The proposition 13 implies that
all these cosets have the same modulo. The only theoretical problem concerned with this
enumeration process is the possibly infiniteness of the representative of a LCCE coset congru-
ence with zero modulo. Methods like those of [Fea88b] provide a parametric representation
of solution sets of systems of linear constraints. Hence the above mentioned enumeration is
obtained by partitioning the LCCE system into two subsystems: one with non zero modulo
equations and the other with zero modulo equations.

2.2. Equivalence relation. The only case where equivalent cosets (representing the same
integer tuples set) are easily detectable is when they are equal to Z".

PROPOSITION 69 (RELATIONAL COSET CONGRUENCES EQUAL TO Z"). A relational coset
congruence C' = {A;. X = 0;.[l;, u;] <mi>}ie[1 o1 is equal to Z" if and only if

Viell,p] I <u and 6;.[l;,u;] (m;) =Z

Proor. C' = Z" is equivalent to say that every single LCCE solution set is equal to Z". If
it is the case for A;. X = 6,.[l;, u;] (m;), then let us show that ;. [l;, w;] (m;) = Z and [; < u,.
If m; = 0, then ged(A;1, Ao, ... ,4A;,) = 1 and knowing that the solution set of the LCCE
is Z™, Bezout’s theorem implies that 6;.[l;, u;] (m;) = Z (I; < u; because otherwise the LCCE
has no solutions at all). Suppose now m; # 0, if [; > u; then the LCCE has no solutions and
if 0;.[l;,w;](m;) # Z then there exists s such that 6;x ¢ ;. [l;,u;] (m;). The solution set of
A;. X = 6;x mod (m;) is not empty since ged(A;q, Ais, ..., Ay, m;) = 1 and is not in the
solution set of A;.X = 6,.[l;, w;] (m;) which is consequently not Z". O

Of course, the equivalence of relational coset congruences is provided by comparing their
parametric representations because comparing their common modulos and then comparing
their representative sets is possible. We do not use so costly operations and shall only use
operators that need constant time with respect to the number of cosets contained in its
relational coset congruence operands. Hence contrary to the non relational model of coset
congruences, no normalization is explicated here.

The set inclusion induced order is possibly defined with respect to the relational coset
congruence parametric representation too, but once again it does not appear to be efficiently
implementable.

2.3. Precision concrete order. As for the case of coset congruences, the definition of an
accuracy function is needed, which implements a heuristics corresponding to the informative
order.
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Ficure V.4. Relational coset congruences with equal accuracy.

DEFINITION 70 (Accuracy ™). Let RC = {A;. X = C;}
gruence. Its accuracy ™*(RC') is defined by

S(RO) = ]

i€[1,p]

ie[lp] be a relational coset con-

L(Ch)

where ¢ is the coset congruence accuracy function.

The accuracy function estimates the density of integer points contained in a relational coset
congruence. The most accurate relational coset congruence is of accuracy zero; it is a represen-
tation of the empty set. Asis explicated below in the below definition of the precision concrete
order, this definition of accuracy is only useful to compare two relational coset congruences
with the same dimension (see below). Notice that adding to a relational coset congruence an
LCCE whose coset congruence is equal to Z does not change its associated accuracy. Unfor-
tunately, adding to a relational coset congruence an LCCE whose coset congruence is empty
does not always provide a zero accuracy (think of LCCEs whose coset congruences have a
greater lower bound than their upper bound). Hence a significant improvement to the accu-
racy measure consists in removing these equations and replacing them by equivalent LCCEs
with empty solution set, before determining the accuracy of a relational coset congruence.

DEFINITION 71 (PRECISION CONCRETE ORDER <;). Let RC; and RC5 be two relational
coset congruences. RC,y <y RC, if and only if

e the accuracy ¢™(RC,) is zero or either

o the number of LCCEs with finite width representative and zero modulo is greater in
RC', than in RC,, or

¢ the numbers of LCCEs with finite width representative and zero modulo are equal

and ™ (RCy) < ™(RCs)

The elements of RC'C' are more precise if they are defined by more LCCEs with finite repre-
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sentative and zero modulo. The relational coset congruences RC; and RC'5 of the figure V.4
corresponding respectively to the LCCEs

(z—y=1.[2,2](3),y = 1.][0,3](0))

and to

(z—y=1.[1,2](3),y = 1.[1,2](0))

have the same accuracy and hence are equivalent for the precision concrete order. The
relational coset congruence R('; of the figure V.4 is smaller for the precision order than
Cy of the figure V.3. Intuitively we see that RC' is of dimension one when (' is of dimension
2.
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3. The set T'C' of trapezoid congruences on Q"

Before getting into the definition of trapezoid congruences, we need to define a componentwise
partial order on Q", given n > 1.

DEFINITION 72 (BASIS-RELATIVE PARTIAL ORDER ON Q7). Given an integer p such that
0 < p < nanda collection @ = (Q1,...,Q,) of p linearly independent vectors of Q", the
partial order < on Q" is defined by:
Q

VG, H € Q" GéH@H(/\l,...,/\p)eQﬁ,H—G:A1Q1+---+/\pr

< is noted < if there is no risk of confusion.
T

Notice that if p = 0 then the relation <is equivalent to the equality. The figure V.5 illustrates
Q

A
24| 9 za
Q Q
Q2
A
<A £ A
Q Q

FIGURE V.5. Partition of Q? by the point A and the order <.
Q

this definition in Q? with the basis @ = (5?) and the point A = (2).

3.1. Dual definitions. We are going to give two equivalent definitions of trapezoid con-
gruences. These two definitions are both useful, the equational one for intuitive understanding
about trapezoid congruences and the parametrical one for their machine representation. Later
in this chapter, we will see that these representations are quite complementary so that some
lattice operations or abstract operators have the use of both of them.

The notion of interval congruence is now generalized to Q. Actually, only the interval
congruences that are not a complementary of a finite rational interval are generalized.
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DeriNiTION 73 (RLICE). Let [a,b](g) be an interval congruence and (A,...,A,) € Q™.
The Rational Linear Interval Congruence Equation (RLICE)

(48) Ay + Ass + -4 Az, = [a, 0] {(q)
is defined by the linear congruence equation system with rational unknowns

\/ Ay + Asg + -+ Az, =29 mod (q)

alzo<b

Geometrically, a RLICE corresponds to a set of “thick”® parallel hyperplanes regularly dis-
persed according to the modulo of the congruence equation. Q" and the empty set are both
representable using RLICEs ([a,b](q) = Q for the first and a > b for the latter case). If ¢ is
zero, the equation (48) is possibly noted

a< Mzyt-oo+Aw, <D
and if moreover « or b is infinite, it is omitted, for example giving
a < \aite+ A,

Let us now introduce a normalized form of a RLICE where its linear coefficients and modulo
are prime.

DeriNiTION 74 (PRIME RLICE). The RLICE
A1$1 + A2$2 + -+ Anxn = [av b] <q>
is said to be prime if ged (A1, Ag, ..., A, q) =1

It is always possible to get an equivalent prime RLICE from any RLICE by dividing it by
the greatest common divisor of its linear coefficients and its modulo. For example the RLICE
3x—2y+ 3z = [%,2] (&) is transformed into 3z — 8y + 6z = [2, 2] (27).

DeriNiTION 75 (RLICE NEGATION). Let I be a RLICE. E’ is its negation if and only if
the system F A E’ is equivalent to the disjunction of two rational linear congruence equations.

The negation of a RLICE always exists when its modulo is non zero or its representative upper
bound is infinite. It is obtained by taking the complementation of the interval congruence used
for the definition of the RLICE following the definition 30. For example the following left hand
side systems are composed of two mutually negative RLICEs, because of their equivalence with
the right hand side systems which are composed of two rational linear congruence equations

3The thickness comes from the possibly non null width of the representative [a, b] in equation (48).
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(possibly identical):

204+ 3y = [4,6] mod 32 B 20 +3y = 4 mod 32
204+ 3y = [6,36] mod 32 B 20 +3y = 6 mod 32
4 < 2243y _ 204+ 3y = 4
-4 < =2z -3y o 20+ 3y = 4

Here is the definition of our abstract model.

DEFINITION 76 (EQUATIONAL TRAPEZOID CONGRUENCE). The rational tuple sets corres-
ponding to solutions of RLICE non-singular systems are equational trapezoid congruences of

Q.

An equational trapezoid congruence is said to be prime if all its constitutive RLICEs are
prime. Here is the parametric equivalent definition.

DEFINITION 77 (PARAMETRIC TRAPEZOID CONGRUENCES). Let

e p, r, s and t be non negative integers such that 0 < p+r+ s+t < n;
o 5 =(51,. ., Sptrpstt) € QP Tt he a collection of linearly independent vectors of
Q™
o A,Bc Q"and C € Qrtrts+t guch that B — A = 5C.
The parametric trapezoid congruence of Q" with lower bound A, upper bound B, shape S of
integer rank p, rational rank r, bounded rank s and unbounded rank ¢ is the subset of Q"

noted [A, B] (), ., defined by:

(p,r

X=A+51+9),

49 A, B](S © lx eqr/ ®€z2rQ{0}Q,
(19) [4, B (S) 00 fo<rsc

or equivalently in terms of rational linear cosets by:

(50) (A, BY(S) sty = U (X +Y)(5" ),

A B

niIA
niIA

o < Y
SpHrts+T ptrtstt

where O is the null vector and < the componentwise order.

The proof of the equivalence of the two defining expressions 49 and 50 is just a verification.
Sometimes, the parentheses around 5 are omitted for a sake of clarity. The relation between
(' and the bounds of the trapezoid congruence is not recalled if there is no risk of confusion.

Geometrically speaking, the definition (49) corresponds to a set of rational tuples which are
the sum of a point A, a trapezoid {ST € Q7, 0 < T < ('} and a regular distribution pattern

{5®, ® € Z*Q"{0}*Q } (look at the figure V.7 to differentiate the four kinds of components
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L

L
g
L

FicurE V.6. Trapezoid congruence and its underlying relational coset congruence.

of this distribution pattern), while the definition (50) considers a set of rational linear cosets
of common modulo the linear subgroup <Sp+’">(pyr) and consecutive representatives bounded
by A and B (for the order induced by .5') and unbounded in the directions of the ¢ last vectors
of §. We call

{X+Y€Q",A§X§Band0 < Y}
5 5

SPtrtetl prtstt

the representative and the linear subgroup <Sp+’">(p ") the modulo of the trapezoid congruence

[A7B] <S>(p7's t)"
unique. TC((Q), ,)) denotes the set of all trapezoid congruences of modulo (@), ., and T'C
the set of all trapezoid congruences.

Notice that the representative of a parametrical trapezoid congruence is not

3.2. Examples. Examples will only be presented in the case of Q, although it is often
necessary to consider much higher dimension spaces. Let us see on an example what a para-
metrical trapezoid congruence looks like. Figure V.6 represents the parametrical trapezoid

congruence (). i>(2707070)

and is the solution of the prime equational trapezoid congruence

{ x—3y = [3,8](11)
e — 2y =

2 |G [0

H o =T

b Lo |

too. The two linearly independent vectors constituting the modulo have been represented
with thick arrows. The drawn trapezoids with sides parallel to each vector of the modulo
stand for the representatives of the given parametrical trapezoid congruence. More classical
patterns of subscript set values like strips or blocks can be easily represented by parametrical
trapezoid congruences.
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The figure V.7 summarizes different kinds of shapes of parametrical trapezoid congruences

of Q. Example (1) is the rational linear coset
) (DI85,

(D{i3),, = [

Example (2) is the set of bounded parallelograms

)Gl o)

Then the bounded and unbounded ranks are exchanged providing the set of half strips case (3)

)Gl o),

The case (4) is a set of unbounded strips

)OIz 2,
o) GOl ),

too. The example (5) corresponds to

(521G o),

The example (6) corresponds to one representative of example (3) and is the trapezoid con-

()Gl o),
(3 (3300,

and finally the example (8) corresponds to a half plane

)Gl o,

b | L [
b | L [
b | L [

DND b [

it is equal to

The example (7) to
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Hence the trapezoid congruence model contains the most usually encountered patterns in the
field of matrix computation.

3.3. Equivalence of parametrical and equational trapezoid congruences. The
proof of the equivalence of the two definitions of trapezoid congruences (given in appendix D)
leads to an algorithm used implicitly in the following. To take a parametrical trapezoid
congruence and to give the corresponding equational trapezoid congruence is no more difficult
than solving a set of linear equations. The other way is a bit more complicated, since first
the equations are solved and then their solution sets are intersected. In fact, equation solving
and intersection of two solution sets are equivalent problems because solving an equation in
the solution set of the other gives the intersection of the two solution sets. The solution of a
RLICE in Q7 is a parametrical trapezoid congruence, hence a method to solve a RLICE in a
parametrical trapezoid congruence is only needed.

The latter problem is easily reduced to the particular case in which the parametrical trape-
zoid congruence is of orthonormal shape (the collection of vectors constituting the shape is
orthonormal). The resolution of a RLICE in a parametrical trapezoid congruence is used to
define the abstract test with a RLICE condition.

The following theorem (proven in appendix D) holds:

THEOREM 78 (TRAPEZOID CONGRUENCE REPRESENTATIONS EQUIVALENCE). The
equational and parametric definitions of trapezoid congruences are equivalent.

In the following, parametrical and equational trapezoid congruences are not differentiated, ex-
cept if one formalism is explicitly requested. An example of the two equivalent representations
of a trapezoid congruence is given at the beginning of the section 3.2.

3.4. Comparison. The partial order on T'C is not expressible in terms of the order on
rational linear cosets, but is reduced by the following theorem to the comparison on interval
congruences.

THEOREM 79 (CHARACTERIZATION OF THE PARTIAL ORDER ON T'C'). Given a trapezoid
congruence in parametrical form T) = [A, B] <S>(p vy @nd another in equational form Ty =
(A1 X = [an, b {6i))iepmg: T2 € To if and only if for all i in [1,m]:

lgi-di] (ei) Sy [as, bi] {a)

where
ptr+s+t p+r ptr+s+t
j=1 j=pt1 jeptrtst+l
€ = ng(AZShAZSQ, ,Ai.Sp)

Proor. Ty C T if and only if

A (A4 ST+ @) = [ai, b (q:)
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(7) (8)

F1Gure V.7. Different kinds of trapezoid congruences of Q.

91
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for all in [1,m], 0 <T' < C and @ in Z*Q"{0}°Q’, which is equivalent to the condition

fi (A St)ar + (AiS2)as + -+ (AiSp )z, = [ai, bi] (4:)
for all f; € [g;,d;] and z; € Z. Now noticing that
we see that it is equivalent to the interval congruence inclusion figuring in the theorem. [

The comparison algorithm follows directly from this theorem. For example the comparison

) CDICE 1), = 100 ) (I 20,

where the right operand is equationally represented by the RLICE 2z — y = [—4, —1](10) is
reduced to the comparison on IC

o =

e U= R

PRrOPOSITION 80 (TRAPEZOID CONGRUENCES EQUAL TO Q7). Let T = [A, B](S5)
be a trapezoid congruence. T is equal to Q" if and only if

prs,t)

p+r=mn
A+S1‘|‘Sz‘|‘"'+sp§B
or equivalently, there exists an integer i < p such that ¢; > 1 (with B— A = 5C).

ProOOF. Since S is a basis of Q”, we have p+r + s+t =mn.
If s+t > 0 then T surely does not contain points P such that P < A hence s+t = 0.

Sp+7‘+1,n
The last point comes from the consideration of the definition (50) of parametrical trapezoid
congruences. []

Notice that the equational representation allows a simpler characterization of trapezoid con-
gruences equal to Q": the interval congruences of all the RLICEs of the system must be equal
to Z (and the interval congruence bounds well ordered). The characterization is preferably
done on the parametric representation in order to minimize the representation translations
during the analysis (most of the operators on trapezoid congruences use the parametric rep-
resentation).

PRrROPOSITION 81 (TRAPEZOID CONGRUENCES EQUAL TO ()). Let T = [A, B] () be

a trapezoid congruence. T is equal to ) if and only if

A £ B

S

(p,r,5,t)

or equivalently, there exists an integer i such that ¢; <0 (with B — A = SC).
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This is a direct consequence of the definition of the parametric trapezoid congruence. The
equational way to say the same thing is to consider systems where at least one RLICE has
its representative lower bound greater than its upper bound (recall that all equations are
independent, hence no incompatibilities occur between RLICEs).
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APPENDIX D

Representation translation algorithms

In order to prove the theorem 78, we are going to build two algorithms providing the trans-
lations between equational and parametric representations. These algorithms are extensions
of Granger’s algorithms providing the equivalence between equational and parametric rep-
resentations of cosets of Q7. Six preliminary lemmas are necessary, the two first providing
the solution set of a non zero and a zero modulo RLICE in a rational linear coset, the next
two the solution set of a non zero and a zero modulo RLICE in an orthonormal trapezoid
congruence'. The next lemma reduces the determination of the solution set of a RLICE
in a trapezoid congruence to the determination of the solution set of another RLICE in an
orthonormal trapezoid congruence. Finally the last lemma provides the translation from a
parametrical representation to an equational one.

Considering a linear congruence equation with several consecutive possible representatives,
it follows directly from proposition 12 that the intersection of ZPQ" with the solution set of
a non zero modulo RLICE is a parametric trapezoid congruence of integer rank p + 1 and
rational rank r — 1.

LemMma 82 (RLICE 1N ZPQ"). Let A,41 and ¢ be non zero rational numbers, a and b be
finite rational numbers. The solution set of the RLICFE

/\1x1 + Azwz + ...+ Ap+1$p+1 + ...+ /\p_pr_l_r = [a, b] <q>
in [0, 0] <I>(p r,0,0) with 0 < p < p+r— 1 is the trapezoid congruence
a b AL A lq]
o= [ eyt (= Sl = 2l 1,
/\p+1 r+ /\p+1 r+ /\p+1 r+ P /\p+1 r+ /\p+1 r+
A Apir
Ip+2 - /\p—-l—z[p+17 s 7Ip+r - /\pilp+1>
p+1 p+1 (p+1,r—1,0,0)

The columns of the shape of T are linearly independent.

! An orthonormal element of T'C has its lower bound equal to the null vector and an orthonormal
shape.

95
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This lemma is generalized to RLICEs with one non zero coefficient of rank greater than p+ 1
and less than p + r by simply permuting the variables.

Now if the modulo of the RLICE is zero, the result is a trapezoid congruence of rational
rank 7 — 1 too, but of incremented bounded or unbounded rank (instead of integer rank as
for the preceding lemma) depending on the finitness of the representative of the RLICE.

LEMMA 83 (DOUBLE LINEAR INEQUATION IN ZFQ"). Let A,;, be a non zero rational num-
ber and a a finite rational number. The solution set of the RLICFE

a< Mzi4+ Ao+ .o+ AT, <D

in [0, 0] <I>(p,r,0,0) with 0 < p < p+r— 1 is the trapezoid congruence

a a+(b—ae A Aptre
T = A IP+T7 i ) Ip+7“:| <Il - A—1]p+r7 s 7Ip+r—1 — ot 1Ip+r7
p+r p+r

p+r p+r
1
o,
p+r (p,r—1,¢,1—¢)

where ¢ is 1 when b is finite and 0 otherwise. The columns of the shape of T are linearly
independent.

Proor. The same verification as for Proposition 12 is necessary and is done by noticing

that the difference there between the upper and lower bounds is blela (/\qulrllp‘i'l)‘ Hence the

upper bound is greater than the lower bound for the partial order relative to the shape of T
and the only points comprised between them are the ones corresponding to a solution of one
congruence equation of representative between a and b following Proposition 12. O

Now a similar result is provided by the following lemma when the representative of the original
trapezoid congruence is of non null sizes (its lower and upper bounds are distinct).

LemMa 84 (NoN zERO MODULO RLICE IN A TRAPEZOID CONGRUENCE). Letr be a pos-
itive integer, p, s,t three non negative integers such that p+r+ s+t =n and a and b finite
rational numbers. The solution of the RLICE

(51) Ay + Aszs + .o+ Nz, = [a,0](q)
such that g\, 11 # 0 and a.b is finite, in the trapezoid congruence:

[07 P] <I>(p,7‘,s,t)

s equal to the trapezoid congruence:

| | +1 ) szs + — | | +1 + Z S (p+1,r—1,s,t)

i=p+r+1
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Ficure D.8. Orthonormal trapezoid congruence and non zero modulo RLICE intersection.

where:
Pyt (T8 ifi=p+1
Si -
I — ,\;\prH otherwise
Moreover, (A, A, ..., A,) is orthogonal to the rational rank columns of S.

Proor. Using the expression (49) of the parametric trapezoid congruence definition, the
trapezoid congruence provides
X =I1(T+ o),
X e Q) ®€Z*Q{0}°Q},

=10, 1D O<T<P

(p,r,s,t) =
and noticing that the order < corresponds to the component wise order on vectors, ) is equal
to
(52) UJ (6 (1) X oo x (& (1) X Q" X {&prii} X oo X {&pprs ) x QY

0<€:<pi, iE[l,p-I—r-I—s]
Now, in the RLICE (51), we make the unknown change and constant instantiation

Vi€ [1,p] v, o= yu+é&
Vielp+Llp+r] Y;
&

Vielp+r+1,n] a
The &; are the constants considered in expression (52) and are arbitrary non negative rational
numbers when ¢ > p 4+ r + s. Hence we get

(/\13/1 + A&+ Ay + ’\pfp) + (’\p+13/p+1 oot ’\p+ryp+r) +
(Ap+r+1fp+r+1 ‘I’ s ‘I’ Anfn) = [av b] <q>

and we are going to solve it parametrically with respect to its s 4+ ¢ last unknowns. The
problem is now transformed into solving the RLICE

Ayt Al F Ao T A tpar = [a— 0= pl{g)
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Where p = Zf:l Alfl —I_ Z?:p{—r-l—l AZfl? 1n
Z'x Q" = [0,01) 00

where I = I(p+ r) (by applying the same translation to expression (52)). Lemma 82 implies
that each parametric equation has the solution

%N
Y2 a—p b—p ] < Ay A 4]
_ e |—-1,,,—"1 L -0, I, — =27 . 1.,
/\p+1 p+1 /\p+1 p+1 1 /\p+1 p+1 P /\p+1 p+1 /\p+1 p+1
yp+r
A A
Ip+2 - p—+2[p+17 s 7Ip+r - p—+Ip+1>
(p+1,r—1,0,0)

’\p+1 ’\p+1
Let us note @' the modulo of this trapezoid congruence solution. By applying the definition
expression (50) of parametric trapezoid congruences and expressing I,;, in terms of Q7 , |, we
get

W
Yo
/
. € U X <Q >(p+1,7‘—1)
a— b—
Ypir ot ;+1§,X§,|Tf P41

Following the definition of the basis relative order, it is equivalent to

)
Y2 g—=p !
€ U W@p-l—l <Q >(p+1,r—1)
a<o<b
yp+r

Then, introducing the s 4 ¢ last parameters
)

r g—p r
yp+ & U <—Sp+1 ‘I’ €p+r+1Ip+r+1 —I_ e —I_ 5”1”) <SP+ >(p+1,7‘—1)

Eptran a<o<b 4]

c,

where Q' is transformed by adding s + ¢ rows of zeros to get the p + r first columns of 5.
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Then the definition of p provides for the tuples (y1,. .., YpsrsEpirsas- .- > &) the expression

o— Z N .
U p+1 + Z fz ( ) +1 P-I-l) <Sp+r>(p+1,r—1)

a<o<b | | i=p+r+1

In terms of the initial variables {z1,..., Zp4r, Tpyri1s- -, 2,) the parameterized solution set
is

i=p+r+1

<U<b (Z;& ( i p+1) | | Spt1 + Z & 2) Sp+r>(p+1,r_1)

and the solution set of all parametric equations is

P o n .
U (Z;&Si + mSPH + Z &Si) Ci >(P+1,7‘—1)

a<o<b i=p+r+1
0<¢i<pi,isptrts
0<¢€i,i>p+r4s

which is

n

U (X‘I' Z 52'52') <Sp+r>(p+1,r—1)
a » b ptr+ts i=p+r+s+1
S £ X < T e S DI s, v

0<Es,i>ptr+s

and finally

niIA
niIA

U (X —I_ Y) <Sp+r>(p+1yr_1)
A X B

O < Y

sptrts+i,n

The nullity of the dot product (Ay, As, ..., A,).5; for i € [p+ 2,p+ r] is straightforward. O

Geometrically, this lemma gives a method to calculate the intersection of a trapezoid con-
gruence (a set of regularly dispersed trapezoids with at least one unbounded side) with a set
of regularly dispersed sets of consecutive parallel hyperplanes (the solutions of the RLICE);
the result is a trapezoid congruence. The same generalization as for lemma 82 is possible.
For example the solution set of the RLICE z — 2y = [%, g] (6) in the parametric trapezoid
congruence [(5), (%)] (3 ?>(1717070) is the trapezoid congruence [( %), (2)](1 _03>(2707070) as is

-1 2
illustrated on the figure D.8.



100 D. REPRESENTATION TRANSLATION ALGORITHMS

[ ]
’
g’

N =

Ficure D.9. Orthonormal trapezoid congruence and zero modulo RLICE intersection.

LEMMA 85 (ZERO MODULO RLICE IN A TRAPEZOID CONGRUENCE). Let p,s,t be non
negative integers, v a positive one such that p+r+ s+t =n and a a finite rational number.

The solution of the RLICFE
(53) QS /\1x1 -I—Azwz-l— —I—/\n$n S b

such that \,1, # 0 and a is finite in the trapezoid congruence:

[07 P] <I>(p,7‘,s,t)
s equal to the trapezoid congruence:
P ptr+s—1
aSpirs ZpiSi + PptrgsSpgr + Z piSi + (a+ c(b— a))sp+r+s <S>(p,r—1,s+c,t+1—c)
i=1 i=p+r+1
where:
/\;TIP_H ifi=p+r+s
Sio= Q Dprgs = Ly, ifi=ptr A sF0
I — ,\;\ﬁlpw otherwise
and ¢ is 1 when b is finite and 0 otherwise. Moreover, (A, As, ..., \,) is orthogonal to the

rational rank columns of 5.

Proor. Following the same way as for proving the lemma 84, the problem is transformed
into solving the RLICE

(54) a—p< M+ ANV A Yy Sb—p
where P = Zf:l Alfl + Z?:p+r+1 Alflv in
Zrx Q" = [0,01{I)

p,r,0,0)
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where I = I(p+ r). Lemma 83 implies that each parametric equation (54) has its solutions
t(ylv Yoy 7yp+r) iIl

a—p, a—p + (b—a)c
Appr TN

p+r p+r p+r p+r p+r

A1 A r—1 1
Ip+r:| <Il_A—Ip+r7 s 7Ip+r—1_ Ap+ Ip+r7 h Ip+r>
(p,r1,¢,1—=)

Let us note @’ the modulo of the trapezoid congruence solution. By applying the definition
of parametric trapezoid congruences and expressing [,;, in terms of ¢) we get a first
expression corresponding to the case where b is infinite

/
p+r?

W
ol eU (om0 o) (@),
0<o
Yp+r

and a second expression corresponding to the case where b is finite

%N

Y2 +r—1

e U—n@ ()
a<o<b ’

yp+r

Both cases are expressed in

)
Y2 +r—1
S e U to-pa. (@7 >W_1)
a<o<b ’
yp+r

Then introducing the s + ¢ last parameters

W

e < U ((U - p)Sp+r+s + £p+r+1lp+r+1 +...+ ntn) <Sp+r_1>(p,r—1)

Sprt a<o<b
€n
where )’ is transformed by adding s + ¢ rows of zeros getting the corresponding columns of
S. Then the decomposition of p provides for the set of tuples (y1,. .., Ypsrs Epiraisr- -+ 6n)

the expression

P n A; »
U ((U - Z_; Azgz) Sp+7‘+s + Z fl (IZ - A—IP‘H‘)) <SP+7' >(p,r—1)

a<o<b i=p+r+1 p+r
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In terms of the initial variables {z1,..., Zp4r, Tpyri1s- -, 2,) the parameterized solution set
is

) pt+r+s—1
U Z fz ( g p+r) ‘I’ £p+7'+s p+r ‘I’ Z fzs ‘I’ USp+7‘+s
a<o<b \i=1 +

i=p+r+1

)

i=p+r+s+1

and the solution set of all parametric equations is

pt+r+s—1
U (Z 525 + £p+7'+s p+r + Z 525 + USP+T+S

a<o<b t=1 t=p+r+l
0<¢i<piis<ptrts
0<Eg;,i>p4r+s

+ Z @Sz) <Sp+r_1>(p,r_1)

i=p+r+s+1
which is

n

U (X + (1 = ¢)0Sptrys + Z &Sz’) <Sp+r_1>(pm—1)

aSP+T+SSXSGSP+T+S+C(IJ—(1)SP+T+S-I—T i=p+r+s+1
5 5

0<o, 0Z¢&ii>ptr+s
p+r+s—1
where T' = 370, piSi + Ppsrts Sptr + 2icprrss Pid, and finally

N (X —I_ Y) <Sp+r_1>(p,r—1)

niIA
niIA

X<B
O < Y

sptrfsten
The nullity of the dot product (Ay, s, ..., A,).9; fori € [p+1, p+r—1] is straightforward. O

Geometrically, this lemma has the same interpretation as the preceding one except that the
set of regularly dispersed sets of consecutive parallel hyperplanes is changed into only one
set of consecutive parallel hyperplanes (the solutions of the RLICE). The same generalization
as for Lemma 83 is possible. For example the solution set of the zero modulo RLICE z —
2y = [2,2] (0) in the parametric trapezoid congruence [(§), (%)] (3 ?>(1717070) is the trapezoid
congruence [( % ), (_%1)] ( % % >(1 0.1,0) 28 is illustrated on the figure D.9.

The problem of solving a RLICE in a trapezoid congruence is now reduced to the resolution

of an equivalent equation in an orthonormal trapezoid congruence.
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LEmMMA 86 (RLICE IN A TRAPEZOID CONGRUENCE). Let p,s,t be non negative integers,
T a positive one, a a finite rational number and b a finite rational number if ¢ is not zero.

The solution of the RLICFE
Ay + Aszs + .o+ Nz, = [a,0](q)
in the parametric trapezoid congruence

[A, B] (5)

prs,t)

such that there exists an integer j € [p + 1,p 4 r] verifying (A1, As, ..., A,).5; # 0, is the
trapezoid congruence

[A+ SA', A4+ SB(SS5")

(p',r!,s',t")

where [A', B'] (5") ) is the solution set of the RLICE

(ply/rlyslytl
i
(Al,Az,... ,/\n)S 3/.2 = [a—(Al,Az,... ,AH)A,b—(Al,AQ,... ,AH)A] <q>
Yp+rts+t

in the orthonormal trapezoid congruence:

[07 C] <I>(p,7‘,s,t)
with B— A= 5C.
Moreover, (A, A, ..., A,) is orthogonal to the rational rank columns of S.5'.
Proor. X =%(ay,29,...,2,) is in 9 is equivalent to

Ay 4+ Ass + ..o+ Az, = [a,0](q)
X=A+51+)

B-A=5C
®cZP xQ x{0}* x QY
o<r<c

If we note A = (A, As, ..., A,), we get a new equivalent system in terms of the unknown Y

Y=T+¢

ASY =[a— AA,b— AA](g)
X=A+475Y
®cZP xQ x{0}* x QY
B—-A=5C

O<T<cC
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which is equivalent to

Y € [07 C] <I>(p,7‘,s,t)
SC = B-A
ASY = [a— AAb— AA](g)
X = A4 5Y

If » > 0 and at least one component of the vector AS of rank greater than r and smaller than
7 + s is not null, then lemmas 84 and 85 provide the solution set [A’, B'] (S”) ) for Y
and a new equivalent system is provided by

5ol gl 41
(p',r,s't

X=A+4+Y95Y
Y=A+5(1"+9)

B — A = S'(C"

ez x Q" x {0} xQ"
o<1

Hence

X = (A4 SA) + §5(T" + &)
S(B = A') = (§5")C"

ez x Q" x {0} x Q"
o<1 <

which is the trapezoid congruence [A 4+ SA’, A+ SB’] <SS/>(p',r',s',t')'

The nullity of the dot product (Ay, As, ..., A,).(557); for a column of rational rank (55"); is
equivalent to the one of ((Ay, Ag,...,A,)9).9! (because p+r+s+t=p +7 + s +1) which
is implied by lemmas 84 and 85. O

LemMA 87 (CONVERSION TO A RLICE system). Let T = [A, B](5), ., )
ric trapezoid congruence, R a (p+ 7+ s+ t,n) rational matriz such that RS = I. Then T is

equal to the equational trapezoid congruence defined by the RLICE system with the unknowns
X =%Yay, 20,00 2,)

be a paramet-

("R);

K3

X =[('R), . A,('R), .B](1) if i€[l,p]

(‘R), A<('R), X <('R),.B if i€p+r+lp+r+s

("R); A<('R), X if iep+r+s+lptr+s+i

PRrROOF. R exists since the elements of the collection (.5;);en p4ryst+q are linearly indepen-
dent, thus the RLICE system is non singular.
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The elements X of T" are defined by the system

X=A+51+)
B—-A=5C
®ecZrxQ x{0} xQf
O<T<cC

which is equivalent to

RX = RA+(I' + 9)

R(B-A)=C
®eZPxQx {0} x QL
o<r<¢

The p first rows of RX = RA 4 (I' + ®) provide the RLICEs with modulo one, the r next
rows are simply ignored because of their rational component of ®, the next s rows provide
the double inequations and finally the ¢ last rows, the inequalities. [

For example, the trapezoid congruence [( %), (_%1 ES s %

system
- dy=]
x=1[0,%] (0

Finally we are now able to prove the theorem 78.

>(1 0,1,0) is equivalent to the RLICE

Proovr. [of the equivalence of parametric and equational representations] Lemma 87 pro-
vides the equational trapezoid congruence equal to a given parametric trapezoid congruence.
For the other way, let us take a non singular RLICE system

= | A . = [a;, b)) ()

1€[1,n]

We suppose that all the lower bounds of the interval congruences of the system are finite and
that if their modulo is non zero that their upper bounds are finite too. Indeed, if it is not the
case, equivalent systems verifying these conditions are easily determined. The RLICEs with
an interval congruence of infinite lower and upper bounds are just removed and those which
have only one infinite bound are also removed if the corresponding modulo is non zero and
the RLICEs are inversed otherwise. The parametric corresponding trapezoid congruence is
obtained by an incremental resolution of ¥ in Q™. Lemma 86 solves the first RLICE

¥ =AL . = [alvbl] <(]1>
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in Q" = [0, 0] <I>(07n7070), giving the parametric trapezoid congruence T} whose rational rank
is greater than n — 1 and whose rational rank columns are orthogonal to A;. A; and A, are
linearly independent, hence A, is not orthogonal to the rational rank columns of T} and the
RLICE ¥, is solvable in T by lemma 86. After » — 1 iterations of this process, the obtained
parametric trapezoid congruence 7T, is the parametric representation of the system Y. The
equivalence between parametric and equational trapezoid congruences is thus proved. [



CHAPTER VI

ABSTRACT INTERPRETATION OF TRAPEZOID CONGRUENCES

This chapter is devoted to the design of some abstract interpretations using the two domains
described in the chapter V. First the connection between these two domains is provided in
section 1; its particular features are expressed in terms of the general abstract interpretation
framework [CC92b]. Then the approximate operators on the abstract domain are determined
together with the widening operator in the section 2. Finally, the section 3 provides the
abstract statements and is ended with a complete analysis example.

1. Semantic operators

The concrete domain RC'C' and the abstract one T'C' (with two dual definitions) are designed
in chapter V. We bind them now using a pair of abstraction and concretization functions in
order to give the meaning of the abstract elements and to prove that their respective orders
are coherent.

1.1. Soundness relation.

DEFINITION 88 (THE SOUNDNESS RELATION o). The soundness relation o on P (Z")xTC
is defined by

def

o qpT), PCT)

1.2. Abstraction. To abstract a relational coset congruence is to find a rational superset
of it. To be as accurate as possible the abstraction should not add any new integer solution
to the original system.

DEFINITION 89 (ABSTRACTION o). The abstraction function is defined by:

a™ rRCC — TC
(A, X =0, [l;,u;] (my)) = (ALX = a(b;. [l u] (mg)))

i€[1,p] i€[l,p]

where the abstraction function a over coset congruences is given in definition 41.

107
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/

)

Ficure VI.10. The abstraction of the relational coset congruence of the figure V.3.

Notice that an abstraction relation « only requiring that « (6;.[l;, w] (mi), [a:, b] {¢:)) <
;. [l;,wi] (my) = [a;,b;](¢;) N Z would have been sufficient but has not been chosen for the
sake of simplicity.

For example, the abstraction o™ ((z — 2y = 1.[2,3](6))) of the relational coset congruence
Cy of the figure V.3 is the trapezoid congruence (z — 2y = [2, 3](6)) which is represented on
Figure VI.10.

1.3. Concretization. The concretization function 7™ is first defined on a subset of TC'
that is the trapezoid congruences equationaly defined with integer coefficients. It is then
implicitly extended to T'C since every element of T'C' is equivalent to an element defined using
integer coefficients. Such RLICEs defining equational trapezoid congruences are obtained by
multiplying their coefficients with the least common multiple of their denominators. Hence
the functional property feature of the concretization function is preserved by that preliminary
multiplication.

DEFINITION 90 (CONCRETIZATION 7*). The concretization function v* associates to the

trapezoid congruence T' = (A;. X = [a;,b;](¢;));¢py 7 the relational coset congruence

. 1 ) L, 05(1) if H > {—J)
(1) = —N\;. X = l . " ol gi
v (gi { 0;. Hg—w , L;_H <9>H otherwise et

] is a collection of integer tuples of Z", g; = ged(A;, m;) and ;. [l;, u;] (m;) =

where (A;),
7 (e, bi] (g:)-

The preceding definition holds because the resulting system of congruence equations always is
a RCC (the coset congruences of the LCCEs are normalized and the linear coefficients of each
LCCE are prime with the corresponding coset congruence modulo). Indeed, the modulos of
a coset congruence and of its normalization have different absolute values if and only if they

are equal to the empty set or to Z. It is easy to see that 6;. HsH , V—H <m> equals Z if and

i gi g
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only if 6;.[l;, u;] (m;) is equal to Z too' and, in this case, they both are 1.[0,0](1). Finally
notice that 6;. H;—W , U—H <’Z> is never empty because LH < {%J; hence the ged of the
linear coefficients of the LCCE and of their modulo always is 1. The coset congruences of the

LCCEs are normalized.

THEOREM 91 (CORRECTNESS OF 7). The meaning v>(1') of a trapezoid congruence T is
its intersection with Z".

Proo¥. Each constitutive RLICE of the trapezoid congruence (A;. X = [a;,b;]{(q:)),,
corresponds to the system of linear congruence equations

[1,p]

\/ A, X =2 mod (¢)

a; <wxo<b;

and, if 6;.[l;, u;] (m;) = v ([a;,b;] (g:)), then the integer solution set of this system is equal to
the one of the system with integer unknowns

(55) \/ A;. X = k6; mod (m;)

1,<k<u;

because the linear coefficients are integers and (Ua,<x0<b, T <ql>) NZ = U <rey, ki (my).
Moreover it is equal to the solution set of the system provided by only keeping in the disjunc-
tion system (55) the linear congruence equations with solutions. If g; = ged(A;, m;), these
ones are characterized by k; € (g;). The lemma 21 provides the result. O

In addition to the preceding concretization algorithm, first if the coset congruence of an
obtained LCCE is empty then the other LCCEs are removed and, finally, the LCCEs whose
coset congruences are equal to Z are removed. Hence the resulting trapezoid congruence
meaning has the property that, excepting the case where it is equal to one LCCE with an
empty coset congruence, all its constitutive linear congruence equation solution sets are non
empty.

For example the meaning of the trapezoid congruence

(0 20= 557 ) 9= 1) ()

is empty since 7y ([1,2] (£)) = 5.[7,8](12), gcd(6,12,12) = 6 and [Z] > [2] while the

2761 \'7
meaning of the trapezoid congruence

(== e 5] @sr-ow=[3:5] (5)

is the relational coset congruence

(x — 2y =1.[2,3](6))

1t is a direct consequence of the proof of the theorem on the correctness of ¥yq.
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Indeed, v ([1, ] (2)) = 1.[5,9](6) and ||1. [[2], |5]] (£)| = 1.[0,0] (1) = Z; hence the RLICE
1] is redundant. Finally the resulting relational coset congruence corresponds

to the cosets (2)( g>(270) and (3)(} g>(270) represented on Figure V.3.

1.4. Characteristics of the connection (o™, v™). When the meaning of 7" is not empty,
each equation of y™(7T') is a disjunction of Z—J — f]—’ (which is possibly infinite) rational

linear congruence equations; hence v*(7") is the disjunction of

(G- D =D (- 15 )

rational linear congruence equation systems. Following [Gra9lal, we see that all the above
mentioned systems have the same kind of solution A (M), ,, where (M), ) is the solution
set of the congruence equation system

(A;. X =0 mod (m;))

i€[1,p]

Hence 5 is a set of linear cosets of modulo (M), .

ProprosiTION 92 (CHARACTERIZATION OF v~'(Z")). Let (A;.X = [a;,b:]{¢))
trapezoid congruence; it contains Z" if and only if for all i € [1, p]

<[al-lal+

Proor. This is a direct consequence of the propositions 69 and 17 where the cases corre-
sponding to a zero modulo do not have to be considered because of the special kind of interval
congruences used in the definition 66 of trapezoid congruences. [

ie[lp] be a

my;
0<|—
i

where 0;. [l;, w;] (m;) = v ([a:, b:] (¢:))

PROPOSITION 93 (STRUCTURE OF (a™,7™)). The pair of maps (a™,v™) is not a Galois
connection.

ProoF. Since the relational abstraction o™ and the relational concretization > partially
coincide respectively with the non relational abstraction a and concretization v when they
are considered in one dimension, the counter example justifying the proposition 47 is used to
prove the above proposition. [
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1.5. Normalization. Intuitively, the normalization process corresponds here, given a
parametric trapezoid congruence T, to find a new trapezoid congruence T’ with the same
modulo and such that its representative is the smallest one preserving the meaning of T
(T'NZ"=T"NZ"). A simple idea consists in reducing as much as possible the representative
width of each equational trapezoid congruence constitutive RLICE. This is done by following
the property stating that

Ay + Ass + -+ Az, = a mod (q)

has integer solution if and only if ged (Ay, Ag, ..., Ay, q) divides a. This solves well our nor-
malization problem when the equational trapezoid congruence consists in only one RLICE,
but not more. Indeed, the integer solutions of one RLICE preventing the reduction of its
representative may not be solutions of another RLICE of the considered trapezoid congru-
ence. Hence the representative reduction can go further without changing the meaning of
the initial trapezoid congruence. We are not able for the moment to provide a normalization
algorithm satisfying our initial intuitive idea, but only a partial normalization involving the
abstraction and concretization function. Such a construction which is in fact equivalent to
the one described above (reducing the RLICE representatives) allows to take advantage of
the possible improvements of the concretization process for special cases.

DEFINITION 94 (NORMALIZATION %™). The normalization operator n™ on the set of trape-
zoid congruences of Q" is defined by

As for the non relational normalization operator n on interval congruences, 1™ generally re-
places a trapezoid congruence with a non comparable one. This is a consequence of the non
reductive normalization || || on C'C involved in the concretization v of interval congruences, it-
self involved in the concretization of trapezoid congruences v*. Hence a normalized trapezoid
congruence is possibly smaller and has the same meaning as the initial one.

For example the trapezoid congruence

(x -3y = E,Z] <%> , 81 — 2y = [%,20] <33>)

(x gy = [% %] <%> 8w -2y = [9,20]<33>)

is normalized into
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2. Abstract operators

The goal of this section is to deal with the operators on the abstract domain that are needed
for the analysis. Exact meet and join algorithms are not definable since T'C'is not a complete
lattice, hence only safe approximations of them are defined.

2.1. Conversion. As illustrated in the definition of the approximate join operator, the
only really needed conversion consists in finding an approximation of the smallest trapezoid
congruence of T'C' containing a given trapezoid congruence when the new modulo divides the
one of the original trapezoid congruence.

LeMMA 95. Let (S), .,
There exists a shape (S”)

be a trapezoid congruence and (Q),, ., a divisor of (57%7) ..
y such that S = Q and S = S'P where P has the pattern

(p',r!,s' 5t

P ptr  ptr+s  prrds+t

Lol |
E 0 ,
0
(56) — p'4r!
— pr'4s’
— plrl s

where E is a (p',p) block of integer coefficients and 0 denotes a block of zero coefficients.

Proor. The p 4 r first columns of P are just a consequence of the proposition 15. Then
it is sufficient to complete the s’ + ¢ columns of 5’ by taking linearly independent vectors of
Sptrlptrtstt Tt is possible to choose s’ in order to maximize the height of the block of zero
coeflicients above F. [

DEFINITION 96 (SHAPE CONVERSION Cast). Let T'= [A, B] (5)
a shape such that {S7*"
b (")

S = S5'P where P has the pattern (56) and in addition the coefficients of the block F' are
positive. The cast of T' to the shape (5") is defined by

(pos.) be a trapezoid con-

gruence and (5”) is a divisor of (57%")  and

(p',r',s",t")
(p',r';s't")

Castsy,, ., (T) £ [A+8§G A+ 5D

(p',r!;s"t7)

where ' is such that SC' = B — A and G and D are rational (p' 4+ r' + s’ + t')uples such that

ptr+s p+rds+t
Yopwlelt 3 pr[ted] H1<i<y
def t=p+r+s+1
l9;,d;] = [0,0] fl1<j—p <o
ptr+s
Y pix[0,¢] if1<j—p —r<s+t
i=p+r+1
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[N S L
/

Ficure VI.11. Trapezoid congruence conversion.

Y

where p % [0, +00] = [0, 1] by convention if p # 0.

ProPOSITION 97 (EXTENSIVITY OF Cast). Let T = [A, B](S),,
) @ shape such that Cast<51)(p, o t,)(T) exists, then

T g Casth)(pl)rl)sl)t,)(T)

be a trapezoid con-

gruence and (S”) . 1

The proof is just a verification. The cast operation is illustrated on figure VI.11 where
(D10 00) = (1 CONI Do

Unfortunately, the cast of T' to a shape <Sl>(p’,7",s’,t’) whose modulo divides the one of T
is not always possible. The t last vectors of the shape of T" have to be linear combinations
of the columns of S but with positive coeflicients relatively to the ¢’ last columns of 5’. If
it is not the case, a new shape for which the shape cast is possible is easily provided by an
extension of the linear part of the modulo of the shape <Sl>(p’,7",s’,t’)' Indeed, adding to the
linear part of <Sl>(p’,7",s’,t’) the vectors of its ?’ last columns corresponding to the rows of the
block F' containing negative coefficients provides a divisor of the modulo of <Sl>(p’,7",s’,t’)
of the modulo of (5), ., too. Hence, given a divisor @ of the modulo of (5), . it is
always possible to find a divisor ¢’ of ¢) with the same non linear part dividing the modulo
of <S>(p,r,s,t) and allowing the shape cast of 7' to a shape of modulo @’.

The following definition is a generalization of the greatest common divisor on linear sub-
groups to trapezoid congruence shapes.

Cast
<g g >(2,0,0,0)

and
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THEOREM & DEFINITION 98 (SHAPE JOIN A). Let (S1),, ., o, 4y) @0 (S2) . 1 o o) e two

shapes. There exists a shape (9) such that its modulo (ST*") ., divides and has

(p,r,5,t)

the same non linear part as the greatest common divisor of the modulos <Sf1+“>( ) and
P1,71

(P1,r1,81,t1) and

<S§2+T2>(p L and such that the casts of trapezoid congruences of shapes (S;)

<S2>(p2,r2,52,t2) to the shape (5) 9 exist. (9) is noted

(pyrys, (p,r,5,t)

<Sl>(1’1,7‘1,51,f1) /\ <SZ>(P2,7‘2,52J2)

Proor. It is sufficient to build the linear part of the shape join such that it generates the
t; last columns of the first shape and the t, last columns of the second. Then the shape cast
is always possible. []

The shape cast and shape join are the basic steps of the general algorithm taking two
trapezoid congruences T} = [A;, By] <Sl>(p1,r1,s1,t1) and Ty, = [A,, By <SZ>(p2,r2,52,t2) and deter-
mining two new trapezoid congruences T} = [A}, B1] (), and Ty = [45, B3] {(55) of
identical shape and respectively containing 7T and T5 where

<S>(Pﬂ“ysyf) - <Sl>(1’1,r1,81,f1) /\ <Sz>(1’2,r2,82,f2)
Tll = CaSt<S)(p,r,s,t)(T1)
TZ/ = CaSt<S)(p,r,s,t)(T2)

(p,r,5,t)

2.2. Join. The approximate join operator over trapezoid congruences is based on the use
of two elementary join operators which are homothetic and congruence-like join. These two
basic operators both take trapezoid congruences with the same shape and different represen-
tatives. Hence a conversion of the two operands of a join operation to the same shape is
necessary before running these operators. This conversion process is provided by the shape
cast and shape join. The new common shape is based on the greatest common divisor of the
two original trapezoid congruences modulos.

Homothetic join on TC
The next definition establishes how to join two trapezoid congruences with the same shape.
More precisely, it gives one possible trapezoid congruence containing two trapezoid congru-
ences of same modulo.

Recall that lemma 87 states that the conversion of two parametrical trapezoid congruences
with the same shape to their equational representation are equational trapezoid congruences
with identical associated homogeneous equation systems.

DEFINITION 99 (HOMOTHETIC JOIN Uy ). Let Ty = (A X = [a1;,01,](¢:));ep oy and To =
(A X = [ag;, by <qi>)ie[1 ] be two prime equational trapezoid congruences with the same
associated parametric shape.

def

Tile Ty = (A X = a1, 0] (g5) U [as, 03] <Qi>)ie[1,n]
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Y
Y

Ficure VI.12. Homothetic join U,.

ProposiTION 100 (U IS GREATER THAN U). Let T} and T5 be two trapezoid congruences

ToUT, C T, Uy T

The proof is just a verification.
The basic idea resulting from the definition of that join operator is illustrated on figure VI.12
with an example where

() C)ICe 30, = 105 ) GG 3.,

is equal to

;)

g (2,0,0,0)
Congruence-like join on 7C
An alternative to the homothetic join U, naturally defined for two trapezoid congruences of
same modulo is the congruence join Ll ~ that first converts them to a divisor of their common
shape following the definition 96 and then makes an homothetic join. The new modulo is
chosen such that the converted representatives overlap.

| —— |
TN
(.
W W
N
TN
o N
N
| I
P
O~
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Ficure VI.13. Congruence-like join U .
DEFINITION 101 (CONGRUENCE-LIKE JOIN U ). Let Ty = [Ay, Bi](5),, ) and T =

[As, Bs) <S>(p,r,s,t) be two non comparable trapezoid congruences with the same shape. The
congruence-like join T U » T of T} and 75 is defined by

T U, T, £ CaSt(S’)(p/)r’s’t’(Tl) U Casth)(p,)r,)s,)t,)(Tz)

where

1 p ptr+s
Q= A, - A+ 5 Z(Czi — )8 + Z (co; — 1) 5
i=1 i=p+r+1
P
def r
Q) = ged ((S57F >(p,r)v<9>(1,o))

<Sl>(p’,r’,s’,t’) = <Q>(u,v,0,0)/\ <S>(p,r,s,t)

Notice that this definition implies that <S’pl+rl> ) divides <Q>(u v) and the shape conversion

of T} and 7’ to the shape <S’pl+rl>( )7" exists.
p/
ProPOSITION 102 (U » IS GREATER THAN U). Let T} and T, be two trapezoid congruences

TLUT, C TyU,T,
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Proor. It is a direct consequence of the extensivity of Cast and of the proposition 100. O

The example of figure VI.13 illustrates the congruence-like join.

(OGOl 2, v I02) (201G 20,
(2)-(2)100 0.,

The problem raised with the congruence-like join is that if © is taken exactly as indicated in
the definition, the resulting gcd will be a very large linear subgroup; the simple and effective
solution consists in approximating ! with a vector the projections of which on S?QP have
inverse integer coordinates with respect to S?.

— o =
| l\,||
A

[\SEIH

DEerINITION 103 (CHOICE ™). Given two trapezoid congruences T) and T3, the result
Ty |* Ty of the choice between T| and T, is the one having the smallest value by ™ o ™.

Approximate least upper bound
An approximation of the exact least upper bound operator is defined in terms of the homo-
thetic join and of the congruence-like join.

DEFINITION 104 (APPROXIMATE JOIN U™). Let T} = [Ay, B1]{(S1)
[As, Bs] (S2)

(P1,r1,81,t1) and T2 =

(pa,ra,s0t2) D€ tO trapezoid congruences. Their approximate join Ty U™ T is equal

to
T if T5C1T
else T2 if Tl g T2
else (T7 Uy T3) | (T{ U, T)

where <S>(p,r,s,t) = <Sl>(p1,r1,sl,t1) /\ <Sz>(p2,r2,52,t2)7 Tll = CaSt<S)(p,r,s,t)(T1) and

TZ/ = Cast<5)(w”) T2 .

2.3. Intersection. Since no shape meet algorithm is provided because only very approxi-
mate ones have been considered, only special cases of trapezoid congruences intersection are
dealt with. Other cases are approximated either by one of their operands or by building an
equational trapezoid congruence from the lists of RLICEs constituting both of the operand
equational representations.

Homothetic meet on TC
The next definition provides an approximation of the intersection of two trapezoid congruences
with the same shape.
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Ficure VI.14. Homothetic meet [T,

DEFINITION 105 (HOMOTHETIC MEET ). Let Ty = (Ai.X = [a1y, b1, (¢:));epy y and To =
(A X = [ag;, by <qi>)ie[1 ] be two prime equational trapezoid congruences with the same
associated parametric shape.

def

Tine Ty = (A X = a1, bi5] (g5) M @, 03] <Qi>)ie[1,n]

Moreover the cases where at least one of the intersections on interval congruences of the
preceding definition provides the empty interval congruence derive from an empty exact ho-
mothetic meet of trapezoid congruences.

PropoOsITION 106 (Mg, SAFELY APPROXIMATES N). Let T} and T be two trapezoid congru-
ences

TnnT, € TNy T

The proof is exactly the same as for the proposition 100.
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The example of the figure VI.14 corresponds to

D CAG D (CNGE D,
T mena .

2.4. Widening. Two alternatives named congruence-like and interval-like widening are
taken under consideration. They derive respectively of classical widenings on relational con-
gruences and intervals. Let us explicate them separately on comparable trapezoid congruences
Ty C T first before combining them in order to design a widening operator suitable for trape-
zoid congruences.

The transposition of Granger’s widening on linear rational cosets to trapezoid congruences
works as follows: take two comparable trapezoid congruences T, = [Ay, By](5}) and

ot

je=IS IR

,r,0,0
T, = [As, Bs] <52>(p,r,0,0) having the same modulo linear part but possibly differe(ﬁt m())dulo
non-linear part, choose a direction vector I not generated by the linear common part of the
modulo and find the smallest trapezoid congruence containing 75 whose modulo linear part
has been increased with F. Of course the choice of F is important and take 7T} into account
in the sense that the density of points along the direction F must have increased between T}
and T,. In order to adapt this alternative to trapezoid congruences we can consider trapezoid
congruences with identical modulos and simply take a vector of the modulo non-linear part
and put it in the new modulo linear part. What is adopted is not so coarse but take the
vectors of the modulo non-linear part along which the representative has increased from T}
to T, and strictly increases the projection of the representative on them.

Now an adaptation of Cousot’s widening on intervals is done by considering two comparable
trapezoid congruences Ty = [Ay, B1](5) 0,05.0) and Ty = [As, Bs]( 0,0,5,)" The common
vectors of the bounded part of the shape aﬁong which the representative %as increased between
T, and T, are placed in the unbounded part of the shape and the vectors of the unbounded
part of the shape along which the representative has increased between T} and 75 are placed
in the linear part of the modulo.

Now we combine these two features simply using the widening operator on interval con-
gruences.

DEFINITION 107 (EQUATIONAL WIDENING V). Let T} = (A;. X = [ayy, by <‘Zi>)z’e[1 n] and
= (A X = [ag;, by <‘]i>)z’e[1 q] be two prime equational trapezoid congruences with the
same associated parametric shape. Their equational widening T,V T, is defined by

def

Vil = (A X = ([a1s,015](a) V@25, 025] (6:))) ey ng

where V is the widening on interval congruences.

The result of the equational widening is an equational trapezoid congruence. Since the equa-
tional widening is parameterized by the widening on non relational interval congruence, other
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7
/ /

Ficure VI.15. Relational widening V*.

operators are obtained by choosing any possible widening on I(', see the section 2.4 for such
suggestions.

DEFINITION 108 (RELATIONAL WIDENING V™). Let T} = [A, B1] (9))
[As, Bs] (S2)

(p1,r1,81,t1) and T2 =
be two trapezoid congruences. Their widening T1V™T5 is defined by

(p2,r2,82,t2)
def

T1VMT2 = Cast<5)(p)r)s)t)(Tl)vlca,st<5)(p)r)s)t)(Tz)
where <S>(Pﬂ“ysyf) - <Sl>(1’1,r1,81,f1) /\ <SZ>(P2,T2,82J2)'

The operator V™ is always defined. Indeed following lemma 87, two parametrical trapezoid
congruences with the same shape are converted to equational forms of identical associated
homogeneous systems. Those equational trapezoid congruences are then transformed into
prime ones preserving the equality of their homogeneous part and the equational widening is
possible.

The correctness of the relational widening operator definition results from the fact that

(1) V™ is greater than the join operator; it is a consequence of the extensivity of Cast
and of V.

(2) the application of V; to a set of trapezoid congruences with the same shape is station-
ary after a finite number of steps (as a consequence of the similar property of V on
sets of interval congruences). The application of V™ to a set of trapezoid congruences
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is equivalent to its application to an increasing chain because of the use of the Cast
operator in V™. Finally the convergence property of V, leads to the convergence of
V.

An example of widening is provided on figure VI.15 where the widening

20—y = [6,9](9) T 20 —y = [6,10](9)
r—2y = [0,3](0) r—2y = [-3,3](0)
is in fact an equational widening and gives

[6,11](9)
[0, 3](0)

20 —y
T — 2y
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3. Abstract primitives

3.1. Affine assignment. An assignment of an affine expression to an integer variable is
an affine transformation.

DEFINITION 109 (ABSTRACT AFFINE ASSIGNMENT Assign). Let /' be an affine transfor-
mation on Z" and w its linear part. The abstract application Assign(F,T) of F' to the
trapezoid congruence T = [A, B] (5) is the trapezoid congruence defined by

(pyrys,1)
ptrts+it ptrts+it

F(A) ‘I’ Z Ai? F(A) —I_ Z BZ] <Sl>(p’,r’,s’,t’)
i=1 i=1

where
ptrt+s+it

<Sl>(p’,r’,s’,t’) = /\ <U(Si)>(51,52,53,54)

i=1

and

[Ais Bil (") (1 00,0y = Castis) o, ([O’Ciu(si)] <U(Si)>(€1762763754))

and B— A= 5C;¢ is 1if 1 <7< p, 0 otherwise; €5 is 1if 1 <7 —p < r, 0 otherwise; €5 is 1
if1<i—p—r<s,0otherwise, ¢4 is Lif 1 <i—p—1r — s <t, 0 otherwise.

This abstract affine assignment is not exact in general because the affine transformation of
a trapezoid is not in general a trapezoid and hence has to be approximated with an em-
bedding trapezoid. Intuitively, the abstract affine assignment proceeds as following: first an
approximate shape <Sl>(p’,7",s’,t’) of the result is determined and then the original trapezoid
congruence is decomposed as the sum of trapezoid congruences with a one column shape
[0, €51 (5i) (e, er,es,e,y and abstract assigned separately giving [0, c;u(.5:)](u(5:)) ., o, csen)
at the end the result is obtained by making the sum of all their conversions to the shape

(57)

(p'r! s"t)"
ProoF. [of correctness] Recall that the abstract affine assignment is safe if

F(y™(T) € 77 (Assign(F,T))

Let us start by showing that F(T") C Assign(F,T'). The definition expression (49) of trapezoid
congruences implies that there exists O < I' < ' and ® € Z*Q"{0}°Q}, such that an element

X of T is expressed

ptrts+it
X =A+ Z (i + @i)Si
i=1
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an element X’ of F(T') is expressed

ptrts+it

)+ 2: (vi + ¢i)u(S:)

F(A) € [F(A), F(A)](S") 1 4y and for all @ € [1,p+ 1+ 5+ ] we have (3, + ¢;)u(5;) €
[0, ciul S (S ez,0,e0) € [Ais Bil (57) and

(p'r!,s't")

p+r+s+t
X' € [F(A), F(A)(S") (s iy + Z [Ais Bil (S") (1 0.0y

€Assign(F,T)
Now F(T) C Assign(F,T) and finally F'(y*(7)) = F(T'NZ") C F(T)NZ" C Assign(F,T)N
Z" =y~ (Assign(F£,7)). O

Example
Suppose the assignment F’

l:= Bx(i-1) + j
takes the entry context? T

0 0 1 0 00
1 5 0 0 0 4
01’ O 0010
0 0 01 00

(1,2,1,0)

The exit context is given by the trapezoid congruence:

0 0 1 00
1 5 0 0 4
0 I 0 010
—4 0 5 0 4

(1,1,1,0)

3.2. Test with RLICE condition. The tests taken into account in our analysis cor-
respond to conditions having an RLICE form. An advantage of the formalism of trapezoid
congruences is that the negation of such conditions is straightforward (when the modulo of
the RLICE is not null or at least one of its bounds is infinite).

DEFINITION 110 (ABSTRACT TEST Test). Let C' be a RLICE, T" an equational trapezoid
congruence and IV the set of equational trapezoid congruences consisting of RLICEs of T or of
C such that their number is maximal. The abstract test Test(T',C') of condition C' on context
T is a minimal equational trapezoid congruence for the order ¢ o v* in F.

First remark that if the RLICE system obtained by adding the RLICE condition to the
context is an equational trapezoid congruence then it is the result of the abstract test and

?The variables are in order ¢, 7, k,{
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in this case the abstract test is exact, hence optimal. The cases where the RLICE system,
obtained by adding € to T, is singular are dealt with by removing one of the RLICE in order
to get a trapezoid congruence.

The above definition only concerns the true branch of a test. The abstract test involved
on the false branch is obtained by semantically negating the condition. The abstract test
should have the condition o™ (N ) with N the negation of the LCCE meaning of C'. When the
negation of v*((') is not a LCCE, but a conjunction of the LCCEs N; and N, (the case where
the coset congruence of the LCCE is a finite integer interval), an approximation is obtained
by taking the join of the abstract tests with o™ (N,) and with a™(Ny).

This operator is not comparable with the abstract test on rational relational cosets; it is
in fact the only one not extending the corresponding operator on cosets and make the two
analysis non comparable. This drawback is removable just by adding in the definition of the
abstract test a special case corresponding to a rational linear congruence equation condition
and a rational relational coset context, and considering their exact intersection.

ProovF. [of correctness] Let us show that if S is the set of integer tuples solutions verifying
the condition ' we have

PHTYNS T 7 (Test(T, C))
Every element of F by definition contains T'NC', hence T'NC C Test(T,C') and (T'NC)NZ" C
Test(T,C') N Z" and the result. O

Example
Suppose we are analyzing the conditional :
if ((x + y) mod 100) = 2 then
{s}
else

{T}

with an entry context (before the if statement)

0 3 2 6 1
0].{1 < 0 -3 1>
0 =412 1)
4 -2 200 -3
-2, < 2 -100 3 >
8 -2 —12 400 -7/,

At the entry of the “else” branch, adding to our original RLICEs system the complementary
condition

o

we get:

b Qb =

z+y=[-97,1] mod (100)

we get:



3. ABSTRACT PRIMITIVES 125

~194 =3 ~2 200 -3
o7 |, % < 2 100 3 >
388 —6 ~12 400 -7

3.3. Projection. The abstract projection is useful to print the results of an analysis or to
forget about some variables during an analysis, for example at the end of a procedure. The
definition is very close to the one of abstract assignment, both being affine transformations.

(2,0,1,0)

DEFINITION 111 (ABSTRACT PROJECTION PRrOJ). Let T' = [A, B](5), , , , be a trapezoid
congruence, V a set of variables of the program and Ay and Sy the projections of the lower
bound and the matrix of the shape of T on V. The abstract projection Proj(T,V) of the
context T" on the variables of V' is defined by

ptrts+it ptrts+it
Avt Y AnAv+ Y ] ) 1
i=1 i=1
where
ptrt+s+it
<Sl>(p/,w,s/,t/): /\ <SVi>(51,52,53,54)
i=1
and

[Ai7 Bl] <S >(p’ sty T = Cast (8 (o 1,57 21 ([Ov CiSVi] <SVZ'>(51,52,53,54))

and B—A=5C,¢ is 1if 1 <7< p, 0 otherwise, e5is 1if 1 <7 —p < r, 0 otherwise, €3 is 1
if1<i—p—r<s,0otherwise, ¢4 is Lif 1 <i—p—1r — s <t, 0 otherwise.

The proof of the correctness of the abstract projection is quite close to the one of the abstract
affine assignment. It is in fact the justification of the expression of the abstract projection.

Example
The exact projection of the trapezoid congruence

i = [0,0(1)
=5+ k = [1,2](0)
j = [1,5](0)

5i—j4l = [-5,-5](0)

on the subspace corresponding to the last two variables (the subset V = {k,[}) is

E = [1,2](5)
-k+1 = [-6,-1](0)
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The opposite operator, that is embedding a trapezoid congruence of Q" in Q™ with m > n, is
even simpler than the projection because the embedding of the linearly independent vectors
of the original trapezoid congruence shape are linearly independent.

3.4. Example. A prototype (about 6000 lines of Standard ML including the underlying
coset lattices operators) is implemented according to the previous definitions in order to
solve the approximate semantic equations automatically following the abstract interpretation

framework of [CCTT].
The example of Figure VI.16 corresponds to a backsubstitution on a matrix structured as
a set of linear finite difference equations with boundary conditions imposed at endpoints. It
solves sx = b for triangular matrices of shape:
1 x x
1 x x
1

1

-
=8 888
8888

B8 &8R
B8 &8R

1
1

where x represents possibly non null elements and empty spaces stand for zeros. The use of
while loops instead of for loops is only for sake of clarity in the process of determining the
set of semantic equations.

If o : denotes the program point just preceding the statement of the corresponding line
on Figure VI.16 and T, the system of RLICEs verified by the integer program variables at
point « :, the system of approximate semantic equations associated with the backsubstitution
procedure is the following;:

(57) Ty = Test(Ty,(i=0 mod (1)))VT,

(58) Ts = Assign(1s,j < ne)

(59) Ty = Test((15VT),(j =[1,ne] mod (0)))

(60) Ts = Assign(Ty,l — nexi+j—ne)

(61) Te = Assign(Ts,k— nexi+1)

(62) T: = Test((TsVTs),(k—nexi=][1,nb] mod (0)))
(63) Ts = Assign(T7,k—k+1)

(64) T, = T,VTy

(65) Ty = Assign(To,j—j—1)

(66)

66 Ty = T5VTy,

ne and nb are supposed to be some constants® declared in the calling procedures. The
resolution process converges in two iterations and gives the following interesting result that

3In the following, ne = 5 and nb = 2; ne and nb respectively correspond to height and width of the
rectangles of possibly non null coefficients of the matrix being backsubstituted.
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PROCEDURE bksub(ne,nb,n:INTEGER;VAR x:glxarray,

s:glsarray;b:glbarray);

VAR

i,j,1,k:INTEGER;
BEGIN
1: FOR i:=n-nb DOWNTO ne-nb+1 DO BEGIN
2: j:=ne;
3: WHILE (1<=j) AND (j<=ne) DO BEGIN
4: l:=ne*x(i-1) +j;
5: x[1]:=b[1];

k:=ne*i +1;
6: WHILE ((nexi +1)<=k)
AND (k<=(ne*i +nb)) DO BEGIN
7: x[1] :=x[1]-x[k]*s[1,k];
k:=k+1

8: END
9: je:=j-1
10: END;
11: END
END;

Ficure VI.16. Backsubstitution following a Gaussian elimination.
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at point 7: the accessors of the array s verify:

Eo= 1.]1,2](5)
—k+1 = 1.[-6,-1](0)

That is a good approximation of the effectively used part of matrix s. The origin of the
inexactitude is that the representatives of trapezoid congruences are supposed to be parallel
to the directions of the modulo and that it is not the case here since representatives are
rectangles and the modulo is along the first bisector.

The compile time detection of such properties allows to use naive algorithms like the one
given in Figure VI.16 without worrying about optimal storage problems on sparse matrices.
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CHAPTER VII

APPLICATIONS

1. Representation of integer arrays

The following procedure is used in the process of data encryption coming from [PFTV8&6].
Although it is not the optimal coding method, it very well illustrates the possible use of the
trapezoid congruence analysis for the purpose of representing integer arrays.

procedure ks(key: gl64array; n: integer; var kn: gl48array);
var
j,it,id,ic,1i: integer;

begin

{1:} if n = 1 then begin

{2:} for j := 1 to 56 do begin

{3:} glicd[j] := keyl[ipc1[jl] end end;

{4:} it := 2;

{5:} if (n=1) or (n=2) or (n=9) or (n=16) then it := 1
{6:} for i := 1 to it do begin

{7:} ic := glicd[1]; id := glicd[29];

{8:} for j := 1 to 27 do begin

{9:} glicd[j] := glicd[j+1]; glicd[j+28] := glicd[j+29] end;
{10:} glicd[28] := ic; glicd[56] := id end;

{11:} for j := 1 to 48 do

{12:} kn[j] := glicdl[ipc2[j]]

end;

where glicd and ipcl are global arrays of 56 integers and ipc2 a global array of 48 integers.
This procedure is called several times to make 16 sub-keys from the initial one key. Remark
that the abstract version of the conditional expression of the line 5: is n = [1,2](£). The
integer arrays ipcl and ipc2 are constants of the program. The relation between their indices
and their values can be abstracted by a trapezoid congruence. Let us call index; the abstract
index of the constant array ipcl and ipcl the corresponding value. In our example, ipc1 is
instanciated to:

129
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60 52 44 36 28 20 12 4 59 51 43 35 27 19 11 3 58 50 42 34 26 18 10 2
57 49 41 33 25 17 9 1 64 56 48 40 32 24 16 8 63 55 47 39 31 23 156 7
62 54 46 38 30 22 14 6

and is safely represented by the trapezoid congruence:
ipcl = [1,64](0)
8 xindex; +ipcl = [-3,5](63)

Since it is very simple to determine that for two different values of the index index; (element
of [1,56]) the corresponding values of ipcl in the trapezoid congruence abstraction of ipci
are different, we know that all the references to the elements of the array key at program
point 3: are distinct. Such a conclusion allows the loop parallelization when the mentioned
references are on the left hand side of the assignment. The abstract relation between the
value ipcl and its index index; is a safe relation between the index of an element of the array
key and its position in the array glicd: if the element e of index ind in the array key has
been assigned to array glicd with index ind’ then the relation

ind> = [1,64](0)
8 +ind +ind” = [-3,5](63)
holds.
If we rewrite the loop of program point 8:
{1: } for j := 1 to 27 do begin
{2: } k := 3j; 1 := j+1;
{3: %} glicd[k] := glicd[1];
{4: } k := j+28; 1 := j+29;
{5: %} glicd[k] := glicd[1l] end;
the trapezoid congruence analysis determines the projection of the approximation of the
invariant on the variables k and 1

-k = [1,1](0)
E = [1,27](0)
at program point 3: and
l—k = [1,1](0)
E = [29,55](0)
at program point 5:. Hence making the join
l—k = [1,1](0)
E o= [1,27](28)

of these two invariant provides an approximation between the index k of an element of the
array glicd after the loop and its position 1 in the array glicd before the execution of the
loop. The combination of such information provides safe relations between the index of the
input array key and the output array kn.
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1.1. Related work. Several methods exist for summarizing array accesses, including those
based on simple sections [BK89] that are a special kind of trapezoid where the linear coeffi-
cients figuring in the equational representation are in {—1,0, 1}, or on regular sections [HK91]
that corresponds to the combination of the two existing non relational analyses of inter-
vals [CCT76] and cosets [Gra89], even on convex hulls based on [CH78] that figures in [Tri85].
[May92] proposes an approach quite similar to a simple classical non relational interval anal-
ysis.

2. Dependence analysis

The use of a relational integer abstract interpretation for solving data dependence problems
is described in [Mas91]. The use of the trapezoid congruence analysis in this framework is of
course very interesting because of the use that it makes of the models of multidimensional rect-
angles and linear cosets. The very original contribution of the trapezoid congruence analysis
for testing data dependence comes from its possibility to give a very accurate representation of
indirection arrays. For example, very frequently, indirection arrays implement permutations
that are represented using a trapezoid congruence (like in the preceding section), and if the
trapezoid congruence approximation is accurate enough, a loop such as

for i := 1 to n do

Afalil] := B[il

is possibly parallelized by taking into account the permutation feature of the indirection array
a.

On the next program example

for 1 := 3 to 100 do begin

{s} Al2xi] := B[i]+2
if even(i) then
{T} C[i] := D[i]+A[2%i+1]+A[2*%i-4]+A[i] end

the non relational analysis detects that the variables A[2*1] of statement {S} and A[2*i+1] of
statement {T} are independent. The relational analysis determines that the variables A[2*i]
of {S} and A[2*i-4] of {T} are dependent and the corresponding distance vector is (2). It
determines also that the variables A[2*i] of {S} and A[i] of {T} are dependent and the
corresponding distance vector is (7).

The analysis of the program

for 1 := 0 to 20 do
for j := 0 to 20 do begin
for k := 0 to 20 do begin
F1 := j-1; F2 := 3%i+2; F3 := 3%k-7;

{s} A[F1,F2,F3] := C[i+j*k] end
for k := 0 to 20 do begin
Gl := 3%i+4; G2 := 5%j-2; G3 := -2%k+4;

{T} B[i*j*k] := A[G1,G2,G3] end end
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using the linear congruence analysis of [Gra9la] implemented in our prototype determines
that the statement {T} may depend on {S} for the elements A[A1,A2,A3] of the array A
characterized by the relation
Al = 10 mod (15)
A3 2 mod (6)
—Al+ A2 = =2

3. Other derived analyses

Because the array indexes are essentially in a constant integer interval (multidimensionnal
integer rectangle for multidimensionnal arrays) the combination of the trapezoid congruence
analysis with a classical interval analysis should improve the accuracy of the results. Indeed,
the choice made in the join operator between the different join strategies is more precise
if the information resulting from an interval analysis is taken into account. For example
choosing between [3,5](7) and [4,6](7) under the constraint [0,5] should lead to [4,6](7)
since [4,6](7) N [0,5] C [3,5](7) N[0, 5].

Several analyses are easily derived from the trapezoid congruence analysis, either in a
non relationnal way or in a relationnal way. It is the case when the modulo of the trapezoid
congruence is fixed during the analysis (its value depends on syntactic features of the program
for example), a special case of which considers always null modulo elements (they are in fact
a special case of linear inequalities).

Another special kind of trapezoid congruences is possibly considered where all the linear
coefficients of the equational representation are in {—1,0,1}.



CONCLUSION

The presented work, in addition of completing the existing analyses on integer numbers,
provides a method for combining two analyses. First, two well known abstract domains are
considered and a more general than these two basic is built. Instead of the usual combination
of the two basic analyses, which runs in parallel the two analyses and makes them interact at
every step of the analysis, our combination runs only one analysis that heuristically determines
at each step which one of the two basic analyses is the most informative. This is enabled by
the generallity of our model.

A very interesting future work using the trapezoid congruence analysis is to design an
abstract domain dealing with integer arrays by representing them by trapezoid congruence
relations, that was our initial goal. It has been shown in this work that for example integer
arrays implementing permutations are very well abstracted by trapezoid congruences, even
when they are not abstracted by linear constraints or by linear congruence equations.

On an other hand, our analysis is extensible to an analysis of rational variables, by simply
suppressing a number of links between the two abstraction levels, hence giving very close
algorithms. This new analysis is then used to represent general arrays of rational numbers.
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