
No d�ordre

THESE de DOCTORAT de L�UNIVERSITE PARIS VI

Sp�ecialit�e

Syst�emes Informatiques

Pr�esent�ee

par Yan�Mei TANG

pour obtenir le titre de DOCTORAT de L�UNIVERSITE PARIS VI

Sujet de la th�ese �

Syst�emes d�E�et et Interpr�etation Abstraite
pour l�Analyse de Flot de Contr�ole

Soutenue le �� Mars 	

�

devant le jury compos�e de �

MM� Claude Girault Pr�esident
Charles Consel Rapporteur
Michel Mauny Rapporteur
Flemming Nielson Rapporteur
Paul Feautrier Examinateur
Pierre Jouvelot Examinateur

ECOLE NATIONALE SUPERIEURE DES MINES DE PARIS

Rapport A���CRI



	

R�esum�e

L�analyse du �ot de contr�ole est une technique d�importance majeure pour la compi�
lation e�cace des langages de programmation fonctionnelle� Cette technique consiste�
au moment de compiler un programme� �a calculer une approximation de son graphe
d�appel� c�est �a dire quelles fonctions sont utilis�ees par le programme� dans quel ordre et
�a quel niveau� Bien entendu� la pr�ecision de telles informations subordonne le possible
gain en performance d�ex�ecution r�esultant de leur l�utilisation au moyen d�un compi�
lateur optimisant� Dans cette th�ese� nous consid�erons deux approches th�eoriques pour
formaliser l�analyse de �ot de contr�ole� l�inf�erence d�e�et et l�interpr�etation abstraite�
Nous �etendons ces deux m�ethodes d�analyse statique pour ensuite montrer comment
les combiner e�cacement dans le cadre de l�analyse de �ot de contr�ole�

La premi�ere m�ethode que nous pr�esentons� l�inf�erence d�e�et� peut �etre d�e�nie
comme une extension des techniques qui sont utilis�ees pour la v�eri�cation du typage des
programmes en ML� Ainsi� de la m�eme mani�ere qu�un type repr�esente l�approximation
d�une valeur� un e�et repr�esente l�approximation d�une action ou d�une transition
d��etat� Ici� plut�ot que de nous limiter �a adapter les techniques de typage �a la ML

pour faire de l�analyse de �ot de contr�ole� nous introduisons une notion avanc�ee de
sous�typage qui permet d�augmenter notablement la �exibilit�e et la pr�ecision de cette
technique�

La seconde m�ethode que nous consid�erons est l�interpr�etation abstraite qui� util�
isant des techniques d�approximation de point��xe� permet notamment d�obtenir des
informations plus pr�ecises �sur les fonctions r�ecursives� en particulier�� l�a o�u d�autres
techniques utilisent des m�ethodes de calcul beaucoup plus simples� Nous proposons
de combiner ces deux techniques� introduisant la notion d�analyse s�emantique s�epar�ee�
Nous proposons d�associer une analyse de programme bas�ee sur l�interpr�etation ab�
straite� pro�tant ainsi d�une technique performante pour les expressions closes� avec
l�utilisation d�un syst�eme d�e�et� a�n de pouvoir sp�eci�er des informations statiques
en pr�esence de compilation s�epar�ee� et donc d�information partielle sur l�ensemble d�un
programme�

En�n� nous �etudions l�application de l�analyse de �ot de contr�ole pour la d�etection
d��echappements� c�est �a dire la d�etection� en ML� des variables dont l�existence d�epasse
le cadre lexical de leur d�e�nition� D�etecter cette information permet au compilateur de
choisir une strat�egie optimale pour l�allocation des fonctions� Ainsi� lorsqu�une variable
n�est jamais r�ef�erenc�ee en dehors du cadre lexical de sa d�e�nition� on peux alors la
repr�esenter dans la pile d�ex�ecution� Dans le cas contraire� elle doit �etre repr�esent�ee
dans le tas� c�est �a dire g�er�ee par le sous�syst�eme de gestion m�emoire�



�

Abstract

Control��ow analysis is important in optimizing compilers of functional languages�
It strives to approximate at compile time dynamic function call graphs of program
evaluation� The precision of the approximation drives the e�ciency of optimizations
applied in compilers� Control��ow analysis can be expressed by both e�ect systems and
abstract interpretation� My thesis work extends and combines these two static analysis
approaches and describes their applications to control��ow analysis�
E�ect systems extend classical ML type systems with e�ect information� Just

like types describe the possible values of expressions� e�ects describe their evaluation
behaviors� My thesis introduces subtyping to improve both �exibility and accuracy
of e�ect systems� The subtype relation is limited to the inclusion relation on e�ects�
Control��ow analysis by e�ect systems collapses di�erent call contexts together� thus
limiting the accuracy of control��ow information�
Abstract interpretation is built upon denotational semantics by approximating the

�xpoint nature of the language semantics� If abstract interpretation performs more
precise static analysis due to its more operational nature� e�ect systems support sepa�
rate compilation more naturely thanks to module signatures� My thesis introduces the
new notion of separate abstract interpretation that extends abstract interpretation in
the context of separate compilation based on the type and e�ect information of module
signatures� It makes the control��ow analysis as e�ective as the abstract interpretation
approach on closed expressions� but is also able to tackle expressions with free variables
by using their types to approximate their abstract values�
Finally� my thesis studies the application of control��ow analysis to escape analysis�

This analysis identi�es the free variables that outlive the lexical scope of function
de�nitions� thus helping compilers choose an e�cient closure allocation strategy� Non�
escaping variables can be safely allocated in the stack� while heap�allocation is only
used for escaping ones�



Remerciements

Je remercie Claude Girault� Professeur �a l�Universit�e de Paris �� d�avoir voulu pr�esider
mon jury�

Je remercie Charles Consel� Professeur �a l�Universit�e de Rennes� Michel Mauny� Charg�e
de Recherche �a l�INRIA et Flemming Nielson� Professeur �a l�Universit�e de Aarhus pour
m�avoir fait l�honneur d�accepter d��etre mes rapporteurs�

Je remercie Paul Feautrier� Professeur �a l�Universit�e de Versailles� pour s��etre montr�e
un directeur de th�ese agr�eable et arrangeant�

Je remercie Pierre Jouvelot� Charg�e de Recherche �a l�Ecole des Mines de Paris� qui m�a
accueillie au CRI �Centre de Recherche en Informatique� il y a trois ans et encadr�e
mon travail en y contribuant tr�es largement� Grand merci �a lui� car encore� sans lui
cette th�ese ne serait pas�

Je remercie Michel Lenci� ancien directeur de CRI� de qui je garde le souvenir d�un
directeur unique par sa gentillesse et sa sympathie�

Je remercie Jacqueline Altimira� Corinne Ancourt� Vincent Dornic� Francois Irigoin�
Marie�Th�er�ese Lesage� Francois Masdupuy� Nadine Oliver et tous mes autres coll�egues
du CRI pour leur aide et amiti�e�

Je remercie W� Kluge� Professeur �a l�Universit�e de Kiel� qui m�a donn�e une chance
unique de pouvoir venir en Europe il y a cinq ans�

Je remercie mes amis� Hai�fu� Zhen�wu Zhang et Lian Gu� qui m�ont beaucoup aid�ee
et soutenue�

En�n� je d�edie cette th�ese �a mes parents en Chine� Gui�Zhen et De�Xin� mes beaux�
parents en France� Annie et Maurice� �a mon mari Jean�Pierre et �a notre �lle Julie�

�



�



Contents

� Introduction �

� Static Analysis Approaches ��

��	 E�ect Systems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�	 E�ect Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Veri�cation and Inference � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Analysis Framework � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Abstract Interpretation � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Analysis Framework � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


� Control�Flow E�ect System ��

��	 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Language De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Dynamic Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Static Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Consistency Theorem � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Fixpoints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Sube�ecting E�ect Systems ��

��	 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Sube�ecting Rule � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Sube�ecting�Based Reconstruction � � � � � � � � � � � � � � � � � � � � � ��

����	 Uni�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Algorithm R � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Constraint Satisfaction � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

����� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� System Extensions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



� CONTENTS

	 Subtyping E�ect Systems �	

��	 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� The Subtyping Rule � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Subtyping�Based Reconstruction � � � � � � � � � � � � � � � � � � � � � � ��

����	 Algorithm S � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Properties of S � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	


 Separate Abstract Interpretation 	�

��	 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Dynamic Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 CPS Syntax � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Abstract Interpretation Semantics � � � � � � � � � � � � � � � � � � � � � ��
����	 De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� E�ect System Semantics � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����	 De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Approximating Abstract Values � � � � � � � � � � � � � � � � � � � � � � � �

����	 Approximation Function A � � � � � � � � � � � � � � � � � � � � � �

����� Correctness of A � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Separate Abstract Interpretation � � � � � � � � � � � � � � � � � � � � � � ��
��� Optimizations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Subtyping E�ect Systems � � � � � � � � � � � � � � � � � � � � � � ��
����� Flexibility of Abstract Semantics � � � � � � � � � � � � � � � � � � ��
����� Local Control�Flow E�ects � � � � � � � � � � � � � � � � � � � � � ��

��� Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��
 Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Higher�Order Escape Analysis 
	

��	 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Identifying Escaping Variables � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Escaping Variables � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� From Types to Escaping variables � � � � � � � � � � � � � � � � � ��
����� Algorithm I � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� A Stack�based Abstract Machine � � � � � � � � � � � � � � � � � � � � � � ��
����	 Stack Calling Convention � � � � � � � � � � � � � � � � � � � � � � ��
����� Structure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Instructions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Translator C � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��



CONTENTS �

Conclusion ��

Bibliography �	

Appendix � ��

Appendix � ��

Appendix � ��

Appendix � ���



� CONTENTS



Chapter �

Introduction

L�analyse de �ot de contr�ole joue un r�ole�cl�e dans

les compilateurs optimisants pour les langages de
programmation fonctionnelle	

Motivation

Les langages de programmation fonctionnelle� comme Lisp �Steele
��� Scheme �Rees���
et ML �Mitchell��� Appel
�� Milner
�� sont largement reconnus pour leur caract�ere
expressif et s�emantique simple et bien�fond�ee� Cependant� il est beaucoup plus di�cile
de compiler e�cacement ces langages� �a l�instar d�autres langages plus traditionnels�
tels que Fortran ou C� De fait� il existe des di��erences importantes quant au niveau
d�optimisation que tel compilateur est capable d�op�erer sur un programme� consid�erant
distinctement ces deux classes de langages de programmation� En particulier� un com�
pilateur pour un langage imp�eratif traditionnel emploie typiquement une vari�et�e de
techniques d�optimisation inter�proc�edurales du �ot de donn�ees� telles que la propaga�
tion de constantes� l��elimination des variables non�utilis�ees� l��elimination des variables
dites d�induction� etc �Aho����

Toutes ces optimisations d�ependent� bien entendu� de la bonne connaissance du
graphe de �ot de contr�ole au moment de la compilation� Malheureusement� dans les
langages de programmation fonctionnelle� comme les fonctions sont des valeurs �a part
enti�ere� c�est �a dire pouvant �etre pass�ees en param�etre ou en r�esultat �a par d�autres
fonctions� le graphe de �ot de contr�ole ne peut pas �etre d�etermin�e avec exactitude au
moment de la compilation�

L�impr�ecision avec laquelle le graphe de �ot de contr�ole peut �etre d�etermin�e dans
les langages de programmation fonctionnelle rend bien entendu plus di�cile� au mo�
ment de compiler un programme� les optimisations bas�ees sur une connaissance globale
du �ot de donn�ees� Cette optimisation est pourtant d�importance car� pour ces lan�
gages� une fonction est repr�esent�ee par son code ainsi qu�un environnement� c�est �a
dire une structure de donn�ees qui contient les valeurs de ses variables libres� captur�ees
au moment de sa cr�eation� C�est pourquoi de nombreux travaux ont d�ej�a port�e sur
la d�etermination du graphe de �ot de contr�ole a�n d�optimiser leur allocation ou leur
repr�esentation �Leroy
��	� Appel�
� Appel
�� Tang
�� Wand
��� L�analyse du �ot de
contr�ole permet donc d�e�ectuer de telles optimisations� Elle peut �etre exprim�ee �a l�aide
de l�interpr�etation abstraite �Shivers
	� ou bien �a l�aide de l�inf�erence d�e�et �Tang
���






	� CHAPTER �� INTRODUCTION

Les syst�emes d�e�et utilisent un syst�eme de r�egles comme outil de sp�eci�cation
d�analyse statique� Utiliser un syst�eme de r�egles permet d��etablir un jugement des pro�
grammes au regard d�un certain crit�ere� Ce moyen d�expression est facile �a comprendre
et permet donc de raisonner sur les propri�et�es des programmes� L�utilisation d�un sys�
t�eme de r�egles comme outil de sp�eci�cation permet �egalement d�isoler plus pr�ecis�ement
ce qui est du ressort de l�impl�ementation � l�algorithme� La distinction entre sp�eci�ca�
tion et r�ealisation est notamment avantageuse� s�agissant d��etendre l�analyse statique �a
de nouveaux traits du langage� A l�instar de cette m�ethode� l�interpr�etation abstraite
ne permet pas une si pr�ecise distinction entre sp�eci�cation et r�ealisation� Cela rend
beaucoup plus di�cile la formalisation et la r�ealisation d�un compilateur optimisant�

Un autre avantage d�un syst�eme d�e�et par rapport �a une interpr�etation abstraite
est l�extension vers un langage de modules� Il est beaucoup plus naturel d��etendre un
syst�eme d�e�et �a un langage de module donn�e �sur des principes similaires au typage�
qu�une interpr�etation abstraite�

Cependant� il est clair que l�interpr�etation abstraite� utilisant des techniques d�appro�
ximation de point��xe� permet d�obtenir des informations beaucoup plus pr�ecises �en
particulier sur les fonctions r�ecursives� l�a o�u d�autres techniques utilisent des m�ethodes
de calcul beaucoup plus simples� et la pr�ecision de telles informations subordonne bien
entendu le possible gain en performance d�ex�ecution r�esultant de leur l�utilisation au
moyen d�un compilateur optimisant�

A�n d��evaluer la relative performance de di��erents syst�ems de l�analyse de �ot de
contr�ol� �Shivers
	� propose de classi�er la pr�ecision d�une analyse s�emantique au moyen
d�une notion d�ordre� qui indique en fait le nombre d�appels de fonctions successifs pris
en compte dans l�analyse d�une expression donn�ee� Relativement �a cet ordre� nous
pr�esentons deux types d�analyses� bas�ees sur les syst�emes d�e�et et l�interpr�etation
abstraite� qui sont respectivement d�ordre � et 	� Nous �etudions ensuite l�application
de ces techniques �a l�analyse de �ot de contr�ole a�n d�optimiser l�allocation des fonctions
en ML�

Les Syst�emes d�E�et

La v�eri�cation du typage dans les langages de programmation fonctionnelle est un do�
maine de recherche tr�es actif et bien d�evelopp�e �Milner��� MacCracken�
� Damas���
Cardelli��� Tofte
�� O�Toole
��� L�utilisation de types a�n de d�ecrire la structure
des valeurs manipul�ees dans un programme permet �a l�utilisateur de comprendre�
�eventuellement de fournir explicitement� la sp�eci�cation de son application� mais tend
�egalement �a favoriser une programmation mieux structur�ee� et en tout cas �a permettre
la v�eri�cation des erreurs de typage ainsi qu�une meilleure repr�esentation des valeurs
manipul�ees dans le programme�

Nous disons qu�un langage de programmation a un typage statique fort lorsque le
compilateur v�eri�e� contraint et d�etermine le typage des programmes� Cela permet
notamment de pr�evenir� au moment de la compilation� de l�usage �eventuellement in�
coh�erent des valeurs manipul�ees par le programme� En ce sens� le typage statique est
la technique d�analyse statique la plus populaire� Cependant� l�utilisation du typage
statique impose des contraintes assez fortes sur l��ecriture des programmes et peut donc
tendre �a limiter la souplesse et le pouvoir d�expression d�un langage de programmation�



		

En ce sens� l�introduction de notions telles que le polymorphisme �Milner��� Kanellakis�
�
Leroy
	� ou le sous�typage �Cardelli��� Aiken
�� Fuh��� Stansifer��� a permis d�aller
dans le sens de plus de souplesse et d�un caract�ere plus expressif pour les langages
de programmation fortement typ�es� en autorisant notamment le typage de fonctions
g�en�eriques ou bien encore en proposant des contraintes plus souples pour leur utilisa�
tion�

L�inf�erence d�e�et �Lucassen��� Lucassen���� peut �etre d�e�nie comme une extension
des techniques qui sont utilis�ees pour la v�eri�cation du typage des programmes en ML
�Milner��� Tofte���� Ainsi� de la m�eme mani�ere qu�un type repr�esente l�approximation
d�une valeur� un e�et repr�esente l�approximation d�une action ou d�une transition
d��etat� Les syst�emes d�e�et permettent d��elargir notablement le spectre d�utilisation de
m�ethodes de calcul existantes pour la v�eri�cation ou l�inf�erence de type� Cependant�
les e�ets sont souvent repr�esent�es dans des alg�ebres plus complexes que celles util�
is�ees pour les types� A ce jour� les syst�emes d�e�et sont utilis�es dans de nombreux
domaines d�application tels que l�analyse d�e�ets de bord �Talpin
���� Talpin
�����
l�analyse de complexit�e �Dornic
	�� ou l�analyse de liaison statique �binding�time anal�
ysis� �Consel
���

Le type d�une fonction est usuellement repr�esent�e par t� � t� o�u t� est le type de
son param�etre formel et t celui de son r�esultat� Dans un syst�eme d�e�et� nous notons

t�
F
� t le type d�une fonction� et nous d�ecrivons par F la transition d��etat cons�ecutive �a

l�utilisation d�une fonction de ce type� F est l�e�et latent de la fonction� Comme l�e�et
latent d�une fonction est propag�e �a l�aide de son type� il est possible de lier statiquement
l�abstraction d�une fonction au regard de cette propri�et�e depuis sa d�e�nition jusqu��a
son utilisation dans le programme�

Cependant� l�introduction de nouvelles sortes� les e�ets� dans le syst�eme de type du
langage de programmation peut introduire de nouvelles contraintes quant au caract�ere
typable des programmes du langage� Nombre de syst�emes d�e�et existants �Talpin
��	�
Dornic
	� Tang
�� utilisent la notion de sub�e�ecting pour augmenter la �exibilit�e du
syst�eme sur ce point pr�ecis� Cette notion consiste �a admettre un e�et plus grand l�a
o�u cela est n�ecessaire a�n pr�eserver le typage d�une expression� limitant cependant la
pr�ecision de l�information calcul�ee�

A la place de cette notion� nous proposons une notion g�en�eralis�ee de sous�typage
�Tang
��� Cette notion se d�e�nit comme une extension de la relation d�inclusion entre
les e�ets �a une relation d�ordre entre les types� Ainsi� �a l�instar du sub�e�ecting� une
fonction peut admettre autant de super�types �au sens de cette relation d�ordre� que
n�ecessaire pour pr�eserver le typage d�une expression� L�apport de cette notion de sous�
typage est certain quant �a la pr�ecision avec laquelle il devient alors possible d�inf�erer
l�e�et d�une expression� En particulier� l�analyse de �ot de contr�ole peut �etre r�ealis�ee
au moyen de cette outils� en pr�esence de fonctions d�ordre sup�erieures� de constructions
imp�eratives et de compilation s�epar�ee� Cependant� relativement �a la classi�cation de
�Shivers
	�� sa pr�ecision est d�ordre ��



	� CHAPTER �� INTRODUCTION

L�Interpr�etation Abstraite

L�interpr�etation abstraite �Cousot��� Cousot�
� Mycroft�	� est un cadre th�eorique tr�es
puissant pour formaliser l�analyse statique de programmes� Cet outil th�eorique s�appuie
sur un mod�ele de s�emantique formel� s�emantique d�enotationnelle ou bien s�emantique
op�erationnelle� a�n de d�ecrire strictement comment s�e�ectue l�ex�ecution d�un pro�
gramme�

De cette s�emantique� dite standard� du langage est ensuite d�eriv�ee une s�emantique
dite exacte� qui met en �evidence les propri�et�es que l�on cherche �a calculer� Cette s�eman�
tique exacte peut� par exemple �a l�aide de la s�emantique d�enotationnelle� �etre d�ecrite �a
l�aide d��equations de point��xe sur des structures ordonn�ees� Ensuite� l�interpr�etation
abstraite consiste �a d�eterminer un point��xe de ces �equations s�emantiques� telles qu�elles
apparaissent dans un programme donn�e� Ces �equations d�ecrivent r�ecursivement cer�
taines propri�et�es du programme et sont d�e�nies� non pas sur une alg�ebre rudimentaire
comme pour les syst�emes d�e�et� mais sur des structures de treillis pouvant �etre assez
complexes� C�est au moyen de fonctions d�abstraction et de concr�etisation que s��etablie
ensuite un lien coh�erent entre la s�emantique exacte et la s�emantique abstraite� celle qui
exprime les propri�et�es du programme e�ectivement calculables�

Le proc�ed�e est� on le voit� assez complexe� D�autre part� comme l�interpr�etation
abstraite consiste essentiellement �a d�eterminer un point��xe des �equations exprim�ees
dans un programme� l�a o�u l�inf�erence d�e�et utilise l�uni�cation� l�interpr�etation ab�
straite autorise le calcul de propri�et�es beaucoup plus pr�ecises que les syst�emes d�e�et�
Ceci �etant� les syst�emes d�e�et donnent au contraire une information beaucoup plus
facile �a comprendre et �a utiliser� En particulier� il est facile de sp�eci�er le type et
l�e�et d�une fonction dans l�interface d�un module� et de supporter ainsi la compilation
s�epar�ee de mani�ere plus naturelle�

L�interpr�etation abstraite a �et�e �etudi�ee dans les langages traditionnels �imp�eratifs�
�Cousot��� Cousot�
� mais aussi les langages de haut�niveau �fonctionnels� �Mycroft�	�
Deutsch
�� Shivers
	�� tels que l�analyse du crit�ere strict �Strictness analysis� �Mycroft�	��
l�analyse d��echappement �Escape analysis� �Goldberg
��� ou l�analyse du �ot de con�
tr�ole �Shivers
	�� L�analyse de �ot de contr�ole bas�ee sur l�interpr�etation abstraite peut
en particulier distinguer les di��erents points d�appel d�une fonction d�une mani�ere plus
pr�ecise� permettant ainsi de r�ealiser une analyse d�ordre n� mais au d�etriment d�une
compilation s�epar�ee ais�ee�

Si une interpr�etation abstraite permet e�ectivement de calculer des informations
tr�es pr�ecises sur les programmes� l�utilisation d�un syst�eme de type et d�e�et permet au
programmeur de sp�eci�er une approximation raisonnable des propri�et�es statiques de
chacun des modules de son programme� interfac�es au reste de l�application au moyen
d�une signature �Sheldon
��� Ainsi� les syst�emes d�e�et sont des outils d�analyse plus
souples et plus adapt�es �a la compilation s�epar�ee�

A�n de pro�ter de chacun de ces avantages� nous pr�esentons dans cette th�ese une
notion combin�ee d�interpr�etation abstraite s�epar�ee �Tang
��� qui permet d�utiliser plus
naturellement les techniques d�interpr�etation abstraite dans le contexte de la compila�
tion s�epar�ee� Nous consid�erons le cadre de la compilation s�epar�ee comme la compilation
des composants� ou modules� d�un programme en isolation les uns des autres� Nous
formulons ainsi une analyse de �ot de contr�ole �a l�aide de cette technique� qui per�
met d�obtenir des informations tout aussi pr�ecises que l�interpr�etation abstraite stan�



	�

dard dans le cas d�un petit programme � mais qui est �egalement capable de traiter
e�cacement les di��erents modules d�un programme plus important� en utilisant les in�
formation de type et d�e�ets de contr�ole sp�eci��ees dans l�interface des autres modules�
Dans le cadre d�une analyse globale de �ot de contr�ole� l�utilisation d�un syst�eme de
type et d�e�et permet au programmeur de sp�eci�er une approximation raisonnable des
propri�et�es statiques de chacun des modules de son programme� interfac�e au reste de
l�application au moyen d�une signature� Cette signature utilise un syst�eme de type et
d�e�et a�n de donner une approximation des informations de �ot de contr�ole pour le
reste du programme�

L�Analyse d��Echappement

En�n� nous pr�esentons une application imm�ediate de l�analyse de �ot de contr�ole� qui
consiste en l�optimisation de la repr�esentation et de l�allocation des fonctions �Tang
���
l�analyse d��echappement� Cette technique consiste �a identi�er les variables d�une fonc�
tion pouvant �etre captur�ees par d�autres fonctions� et ainsi avoir une dur�ee de vie� ou
un cadre d�utilisation� plus grand que le cadre lexical de leur d�e�nition�

Cette information est d�importance pour la compilation et permet notamment de
d�ecider la classe de repr�esentation des variables� Ainsi� lorsqu�une variable n�est jamais
r�ef�erenc�ee en dehors du cadre lexical de sa d�e�nition� on peux alors la repr�esenter dans
la pile d�ex�ecution� Dans le cas contraire� elle doit �etre repr�esent�ee dans le tas� c�est �a
dire g�er�ee par le sous�syst�eme de gestion m�emoire�



	� CHAPTER �� INTRODUCTION

Contributions

Dans cette th�ese� nous pr�esentons de nouvelles techniques permettant l�analyse de �ot
de contr�ole dans les langages haut�niveau� sur principe de syst�eme d�e�et et interpr�eta�
tion abstraite� Nous r�ealisons l�analyse de �ot de contr�ole bas�e sur les syst�emes d�e�et
pour le compilateur Mini�FX�

Nous apportons une contribution notable au domaine des syst�emes d�e�et en intro�
duisant une notion de sous�typage� Cette notion se d�e�nit comme une extension de la
relation d�inclusion entre les e�ets �a une relation d�ordre entre les types� Ainsi� �a l�instar
du sub�e�ecting� une fonction peut admettre autant de super�types �au sens de cette
relation d�ordre� que n�ecessaire pour pr�eserver le typage d�une expression� L�apport de
cette notion de sous�typage est certain quant �a la pr�ecision avec laquelle il devient alors
possible d�inf�erer l�e�et d�une expression� Nous montrons que l�introduction d�une r�egle
de sous�typage dans un syst�eme d�e�et permet de sp�eci�er un probl�eme de r�esolution
d�ecidable� Nous pr�esentons un algorithme correct par rapport �a cette sp�eci�cation� Le
cadre de ce travail se limite �a un langage dot�e d�un syst�eme de type monomorphe� Il
s��etend cependant de mani�ere parfaitement naturelle en pr�esence de types polymorphes�
comme tout autre syst�eme de sous�typage dot�e des m�emes caract�eristiques�

L�interpr�etation abstraite est une technique d�importante pour les analyses statiques
des langages de programmation fonctinnelle� Si une interpr�etation abstraite permet ef�
fectivement de calculer des informations tr�es pr�ecises sur les programmes� un syst�eme
de type et d�e�et peux etre untilis�e dans le contexte de la compilation s�epar�ee� A�n de
pro�ter de chacun de ces avantages� nous pr�esentons la notion d�interpr�etation abstraite
s�epar�ee qui permet de combiner les techniques d�analyse bas�ees sur l�interpr�etation ab�
straite et l�inf�erence d�e�et en un seul et m�eme outil� L�utilisation d�un syst�eme d�e�et
permet de d�interfacer les di��erents modules d�un programme au moyen d�une sp�e��ca�
tion du type et des e�ets de leurs variables export�ees� permettant ainsi l�interpr�etation
abstraite des di��erents modules du programme�
Nous �etudions l�application de l�analyse de �ot de contr�ole �a la d�etection des vari�

ables dont l�existence d�epasse le cadre lexical de leur d�e�nition� D�etecter cette infor�
mation permet au compilateur de choisir une strat�egie optimis�ee pour l�allocation des
fonctions� Ainsi� lorsqu�une variable n�est jamais r�ef�erenc�ee en dehors du cadre lexical
de sa d�e�nition� on peut alors la repr�esenter dans la pile d�ex�ecution� Nous d�e�nissons
une machine abstraite dot�ee d�une pile de contr�ole pour son ex�ecution� et nous mon�
trons comment les variables peuvent �etre repr�esent�ees en pile lorsque les fonctions ne
les capturent pas�



	�

R�esum�e des Chapitres

Chapitre � � Un Syst�eme d�Analyse de Flot de Contr�ole

L�analyse du �ot de contr�ole est une technique utilis�ee pour la compilation e�cace des
langages de programmation fonctionnelle� Elle consiste �a calculer une approximation de
son graphe d�appel de fonction du programme� Le �ot de contr�ole d�une expression peut
par exemple �etre statiquement repr�esent�e par un ensemble de fonctions susceptibles
d��etre appel�ees durant l�ex�ecution de l�expression� Nous pr�esentons dans ce chapitre
une premi�ere sp�eci�cation de l�analyse de �ot de contr�ole utilisant un syst�eme d�e�et�

Ce chapitre a pour but essentiel de servir d�introduction �a un certain nombre de
concepts qui seront plus amplement d�evelopp�es et am�elior�es dans les chapitres suivants�
Nous d�e�nissons le cadre formel permettant de prouver notre sp�eci�cation� au moins
d�un crit�ere de coh�erence vis �a vis de la s�emantique dynamique du langage� Nous mon�
trons que notre formulation de l�analyse de �ot de contr�ole �a l�aide d�un syst�eme d�e�et
s�adapte tr�es simplement �a des traits vari�es des langages de haut�niveau� fonctions
d�ordre sup�erieur� op�erations de style imp�eratif� compilation s�epar�ee� Cependant� ce
premier syst�eme n�o�re pas de performances remarquables en terme de pr�ecision ou de
�exibilit�e� et nous tenterons dans les chapitres suivant d�am�eliorer cet outil en ce sens�

Chapitre � � Un Syst�eme d�E�et Flexible

A�n d�am�eliorer la �exibilit�e du syst�eme pr�esent�e dans le pr�ec�edent chapitre� nous
introduisons dans notre sp�eci�cation de l�analyse de �ot de contr�ole une r�egle autorisant
l�utilisation de la relation d�inclusion sur les e�ets de contr�ole� Ainsi� si une expression
admet un e�et F� elle admet tout e�et F� sup�erieur �a F au sens de cette relation� Cet
ajout a pour cons�equence d�augmenter la �exibilit�e du typage proprement dit� bien
qu�avec une impr�ecision notable�

Nous pr�esentons un premier algorithme qui permet de calculer le type et l�e�et
de contr�ole minimal au sens de notre sp�eci�cation� Nous prouvons formellement les
invariants de cet algorithme par rapport �a notre sp�eci�cation� En�n� nous montrons
comment �etendre cette sp�eci�cation de mani�ere �a autoriser un typage g�en�erique� Pour
cela� nous introduisons une notion de polymorphisme� L�analyse de �ot de contr�ole
pr�esent�ee dans ce chapitre a �et�e r�ealis�ee pour le compilateur Mini�FX�

Chapitre 	 � Syst�emes d�E�et et Sous
Typage

Maintenant� nous rempla�cons la r�egle d�inclusion sur les e�ets� pr�esent�ee dans le chapitre
pr�ec�edent� pour l��etendre aux types� Nous d�e�nissons ainsi une relation de sous�typage
contra�variante� Cette relation permet �a une fonction d�avoir un type di��erent dans
chacun de ses contextes d�appel�

Ainsi� l�a o�u la sp�eci�cation du chapitre pr�ec�edent n�admettait qu�une borne sup�erieure
de l�e�et pour plusieurs fonctions susceptibles d��etre propag�ees aux m�emes points d�un
programme� l�information d�e�et relative �a chaque fonction peut �etre maintenant d�eter�
min�ee avec plus de localit�e� Notre nouvelle sp�eci�cation est en cons�equence beaucoup
plus pr�ecise qu�auparavant�



	� CHAPTER �� INTRODUCTION

Nous pr�esentons un nouvel algorithme permettant de d�eterminer le type minimal des
expressions au regard de notre nouvelle sp�eci�cation� Nous prouvons que cet algorithme
est correct par rapport �a cette sp�eci�cation en utilisant des outils de preuve similaires
�a ceux du chapitre pr�ec�edent�

Chapitre � � Interpr�etation Abstraite S�epar�ee

Nous consid�erons le cadre de la compilation s�epar�ee comme la compilation des com�
posants� ou modules� d�un programme en isolation les uns des autres� Dans le cadre
d�une analyse globale de �ot de contr�ole� l�utilisation d�un syst�eme de type et d�e�et
permet au programmeur de sp�eci�er une approximation raisonnable des propri�et�es sta�
tiques de chacun des modules de son programme� interfac�e au reste de l�application
au moyen d�une signature� Cette signature utilise un syst�eme de type et d�e�et a�n
de donner une approximation des information de �ot de contr�ole pour le reste du pro�
gramme�

L�interpr�etation abstraite s�epar�ee consiste �a utiliser un syst�eme d�e�et a�n de sp�e�
ci�er le type et les e�ets des di��erents modules d�un programme� au moyen d�une
interface� Cette information sert �a l�interpr�etation abstraite de chacun des modules
d�un programme �en isolation des autres� a�n de donner une approximation des valeurs
abstraites de leurs variables libres �d�e�nies dans d�autres modules du programme��
L�id�ee de base de notre contribution est de consid�erer que l�inf�erence d�e�et de

contr�ole est coh�erente avec une analyse de �ot de contr�ole bas�ee sur l�interpr�etation
abstraite ��a la �Shivers
	��� Dans notre syst�eme d�e�et de contr�ole� les types servent
a repr�esenter statiquement la structure des valeurs� Dans le cas d�une fonction� nous

notons t�
d
� t son type� L�e�et latent d est ici tr�es utile� puisqu�il donne un ensemble

de fonctions pouvant correspondre �a la valeur ayant ce type� mais aussi les possibles
e�ets de contr�ole correspondants�
A partir de ce type� il est alors tr�es facile de donner une approximation de la valeur

abstraite qui correspondrait �a la m�eme valeur� si nous avions utilis�e l�interpr�etation
abstraite pour la d�eterminer� Nous montrons que notre syst�eme d�e�et de contr�ole est
une approximation de l�interpr�etation abstraite du contr�ole pour le m�eme langage et
en pr�eserve les invariants�
Nous proposons d�associer une analyse de programme bas�ee sur l�interpr�etation

abstraite� pro�tant ainsi d�une technique performante pour les expressions closes� avec
l�utilisation d�un syst�eme d�e�et� a�n de pouvoir sp�eci�er des informations statique en
pr�esence de compilation s�epar�ee� et donc d�information partielle sur l�ensemble d�un
programme�



	�

Chapitre  � Analyse d�Echappement d�Ordre Sup�erieur

Nous �etudions dans ce chapitre l�application de l�analyse de �ot de contr�ole pour la
d�etection d��echappements� c�est �a dire la d�etection� dans un programme� des variables
dont l�existence d�epasse le cadre lexical de leur d�e�nition� D�etecter cette information
permet au compilateur de choisir une strat�egie optimis�ee pour l�allocation des fonc�
tions� Ainsi� lorsqu�une variable n�est jamais r�ef�erenc�ee en dehors du cadre lexical de
sa d�e�nition� on peut alors la repr�esenter dans la pile d�ex�ecution� Dans le cas con�
traire� elle doit �etre repr�esent�ee dans le tas� c�est �a dire g�er�ee par le sous�syst�eme de
gestion m�emoire�
Nous pr�esentons une nouvelle technique pour l�analyse statique d��echappement�

bas�ee sur l�information que procure notre syst�eme d�e�et de contr�ole� Il est notable
de consid�erer que cette analyse peut ici �etre mis en oeuvre en pr�esence de fonctions
d�ordre sup�erieur� de constructions imp�eratives ainsi que de compilation s�epar�ee� Nous
d�e�nissons une machine abstraite dot�ee d�une pile de contr�ole pour son ex�ecution�
et nous montrons comment les variables peuvent �etre repr�esent�ees en pile lorsque les
fonctions ne les capturent pas�



	� CHAPTER �� INTRODUCTION



Introduction

Control��ow analysis plays a key role in optimiz�
ing compilers of functional languages

Overview

Functional programming languages like Lisp �Steele
��� Scheme �Rees��� and ML �Mitchell���
Appel
�� Milner
�� are widely recognized for their expressive power and straightforward
semantics� Nevertheless they are more di�cult to implement e�ciently than traditional
languages such as FORTRAN and C� There exists a big gap between the optimization
levels of these two class of languages� Compilers of traditional languages employ a
variety of interprocedural data��ow optimizations like induction�variable elimination�
useless�variable elimination� constant propagation� etc �Aho����

All these optimizations depend on the knowledge of control��ow graphs of pro�
grams at compile time� In functional languages� however� since functions are �rst�
class values� i�e� they can be passed as parameters� returned as results of function
calls or stored in memory locations� function call graphs are dynamic in nature� The
lack of control��ow graphs at compile time makes interprocedural data��ow optimiza�
tions quite di�cult when compiling functional languages� Moreover since higher�order
functions are represented as closures including their codes and the values of their
free variables� control��ow graphs help compilers optimize closure implementations
�Leroy
��	� Appel�
� Appel
�� Tang
�� Wand
��� such as closure representation and
closure allocation� Control��ow analysis is introduced to approximate the dynamic
function call graphs at compile time� Control��ow analysis can be expressed by using
the framework of e�ect systems �Tang
�� and abstract interpretation �Shivers
	��

E�ect systems rely on a proof system to specify a particular analysis� This new
program analysis technique separates the semantic speci�cation from the implemen�
tation of the analysis� Thanks to such a separation� static analyses based on e�ect
systems can be easily extended to other language features and used to formally specify
optimization techniques� However abstract interpretation does not provide such a clear
separation� As a consequence� optimization techniques related to an analyzer based on
abstract interpretation are hard to formalize and extend� Another advantage of e�ect
systems over abstract interpretation is that they can be straightforwardly extended
in the context of separate compilation via module signatures� However the abstract
interpretation approach performs more precise control��ow analysis thanks to �xed
point iteration techniques� The precision of control��ow analysis controls the precision
of the interprocedural optimizations performed by optimizing compilers� �Shivers
	�
introduces the notion of order to mesure the precision of control��ow analysis� The

	




�� CHAPTER �� INTRODUCTION

order indicates the number of pending calls remembered during the analysis of a given
application expression� My thesis presents zeroth and �rst�order control��ow analysis
systems expressed by both e�ect systems and abstract interpretation and studies the
application of control��ow information in optimizing closure allocation�

E�ect systems �Lucassen��� Lucassen��� extend classical polymorphic type systems
�Milner��� Tofte��� with e�ect information� Just like types describe the possible values
of expressions� e�ects specify their possible evaluation behaviors� However the intro�
duction of e�ects imposes new constraint on the typability of languages� The existing
e�ect systems �Talpin
��	� Dornic
	� Tang
�� use the notion of sube�ecting to increase
the �exibility of e�ect systems� It allows expressions to admit larger e�ects whenever
e�ect matching would cause type clashes� thus limiting the accuracy of e�ect systems�
Instead of sube�ecting� my thesis introduces the notion of subtyping �Tang
��� The
subtype relation is limited to the subsumption relation on e�ect information� Sub�
typing allows the same function to have di�erent supertypes at di�erent call sites� as
long as certain they satis�y certain subtype relations� The introduction of subtyping
improves both �exibility and accuracy of e�ect systems� Control��ow analysis by e�ect
systems can be performed in presence of higher�order functions� imperative constructs
and separate compilation� However it collapses di�erent call contexts together� thus
limiting the analysis accuracy to the �th�order control��ow analysis ��CFA��

Abstract interpretation �Cousot��� Cousot�
� Mycroft�	� is another static anal�
ysis framework� It approximates language semantics by using the �xed point iter�
ation technique� Control��ow analysis based on abstract interpretation �Shivers
	�
can distinguish di�erent call contexts� thus performing nth�order control��ow analysis
�nCFA�� but fails to support separate compilation� If the abstract interpretation ap�
proach performs more precise static analysis due to �xed point iteration techniques�
e�ect systems support separate compilation more naturally via module signatures
�MacQueen
�� Sheldon
��� My thesis introduces the new notion of separate abstract

interpretation �Tang
�� that combines e�ect systems and abstract interpretation in a
single framework� It extends abstract interpretation in the context of separate compi�
lation based on the type and e�ect information of module signatures� The control��ow
analysis expressed by the separate abstract interpretation is as precise as the abstract
interpretation approach on closed expressions� but is also able to tackle expressions
with free variables by using their type and control��ow information to approximate
their abstract values�

As a direct application of control��ow analysis� my thesis presents a new escape
analysis for optimizing closure allocation �Tang
��� Escape analysis identi�es the free
variables that outlive their lexical scope in function de�nitions� This compile�time
knowledge of escaping variables helps compilers choose a more e�cient allocation strat�
egy for closures� i�e� non�escaping variables can be safely stored in the stack� while heap
allocation is only used for escaping ones�

Outline

The thesis presents di�erent control��ow analysis systems expressed by e�ect systems
�Chapter �� �� �� and abstract interpretation �Chapter ��� The related work is discussed
in each chapter and the proofs are presented in the appendix at the end of the thesis�



�	

� Chapter � gives an informal description of what e�ect systems and abstract in�
terpretation are� We discuss the basic ideas� describe their frameworks for static
analysis and present their applications in several static analyses�

� Chapter � presents a simple control��ow e�ect system� We give our language
syntax� de�ne the dynamic semantics� introduce the static semantics for control�
�ow analysis and state its consistency w�r�t� the dynamic semantics�

� Chapter � introduces sube�ecting in the static semantics to increase the �exibility
of e�ect systems� We present a reconstruction algorithm R that reconstructs
type and control��ow information of expressions based on sube�ecting and prove
it sound and complete w�r�t� the static semantics�

� Chapter � introduces subtyping in the static semantics to increase the accuracy
of the sube�ecting e�ect systems� We present a reconstruction algorithm S that
reconstructs type and control��ow information of expressions based on subtyping
and prove it sound and complete w�r�t� the static semantics�

� Chapter � introduces the new technique of separate abstract interpretation to per�
form control��ow analysis� We describe the abstract interpretation semantics and
state its consistency with the type semantics� show the approach of approximating
abstract values of free variables by their types and control��ow information and
prove that separate abstract interpretation is a conservative extension of abstract
interpretation�

� Chapter � describes a new escape analysis based on the control��ow e�ect systems�
We present an algorithm I to identify escaping variables of functions� introduce
an e�cient closure allocation strategy� describe a stack�based abstract machine
and compare our analysis with other escape analyses� particularly that based on
abstract interpretation �Goldberg
���

� Finally� we conclude and discuss future work�



�� CHAPTER �� INTRODUCTION



Chapter �

Static Analysis Approaches

E�ect systems and abstract interpretation pro�

vide general frameworks of static analyses	

Modern compilers perform a variety of program analyses in order to produce good
code �Steele��� Cardelli��� Appel��� Kelsey�
� Leroy
����� The goal of the analyses is
to approximate at compile time evaluation behaviors of programs� which help compilers
identify optimization opportunities� Standard analysis techniques have been developed
�Aho��� for the traditional languages like PASCAL and C� which are built upon static
control��ow graphs� However the traditional analysis approaches are not applicable to
higher�order programming languages� since control��ow graphs are absent at compile
time� Therefore e�ect systems and abstract interpretation are introduced to perform
static analysis for the programming languages in which functions are �rst�class values�

��� E�ect Systems

Type systems have been developed in both traditional and functional languages �Milner���
MacCracken�
� Damas��� Cardelli��� Tofte
�� O�Toole
��� By using types to describe
the data structure of values� programmers can describe the intended speci�cations of ex�
pressions� which makes programsmore structured� and compilers can detect type errors�
which allows greater execution�time e�ciency� The static strong typing of programming
languages requires that the type of every expression can be determined at compile time�
It allows type inconsistencies to be discovered at compile time and guarantees that ex�
ecuted programs are type consistent� Static typing is a popular technique used for pro�
gram analysis� Nevertheless by imposing constraints on acceptable expressions� static
type systems� may lead to the loss of �exibility and expressive power of programming
languages� Polymorphism� expressed by both generic types �Milner��� Kanellakis�
�
Leroy
	� and subtyping �Cardelli��� Aiken
�� Fuh��� Stansifer��� Benjamin
�� is often
introduced to allow an expression to have more than one type�

E�ect systems extend classical type systems with e�ect information� Just like types
describe the possible values of expressions� e�ects specify their possible evaluation

��



�� CHAPTER �� STATIC ANALYSIS APPROACHES

properties� In e�ect systems� a classical function type t� � t � is extended to t�
F
� t

where the latent e�ect F records the evaluation property of functions of this type�
Since the latent e�ect statically links a function from its de�nition site to its call sites�
it plays an important role in e�ect systems� The introduction of e�ects increases the
applicability of type systems� Nevertheless since e�ects have their own domains and
richer algebras than types� they make type systems much more complicated�

����� E�ect Semantics

Types in e�ect systems are extended with e�ect information� A type t can either be
a basic type like int � bool or unit � a reference type ref �t� that represents updatable

memory locations containing values of the type t� or a function type t�
F
� t representing

a function that accepts arguments of the type t� and return values of the type t� The
evaluation property of the function body is approximated by the latent e�ect F�

t � Type � BasicTypes j ref �t� j t�
F
� t

Just as types� e�ects have their own domain and algebra corresponding to the eval�
uation properties we are interested in� For example� in a memory side�e�ect analysis�
an e�ect is de�ned as a set of store operations and belongs to a set algebra� An e�ect
F can be de�ned as either the emptyset � meaning the absence of side�e�ects� a basic
store operation like init� read or write� or a set of side�e�ects gathered with the in�x
union operator � �

F ��� �
read j write j init
F � F�

The side�e�ects belong to the following set algebra �

F � �F� � F��� � �F� F�� � F��

F � F� � F� � F

F � � � F

F � F � F

An e�ect system is uniformly speci�ed by a set of inference rules �Plotkin�	�� An
inference rule �called name� is made of a set of predicates P and P� � � �Pn� which means
that the conclusion P holds if the premises P� � � �Pn have been proved� We note�

�name� �
P�� � � �Pn
P

If the conclusion P always holds� the inference rule is degenerated to an axiom�

�name� � P

In e�ect semantics� a predicate E � e � T� F means that in an environment E � the
expression e is evaluated to a value of the type T and its possible evaluation behavior

�The whole syntax is formally presented in Chapter �



���� EFFECT SYSTEMS ��

is recorded by the e�ect F� Note that the environment E de�nes the types of the free
variables in the expression e�

Using inference rules� the e�ect semantics inductively speci�es the predicate for each
expression on its structure� The crucial rules are the �abs� rule for lambda abstractions
and �app� rule for applications�

Given a type environment E and a lambda abstraction �� �x� e�� x is of the type
t� the function body e is evaluated to a value of the type t in the extended type
environment E �x �� t�� and the evaluation property of e is approximated by the e�ect

F� Then the lambda abstraction has the function type t�
F
� t� The latent e�ect is thus

introduced in the function type�

�abs� �
E �x �� t�� � e � t� F

E � �� �x� e� � t�
F
� t� �

When such a function is applied in the application case� its latent e�ect appears in
the resulted e�ect of the application expression to approximate the evaluation property
of the function body� Given a type environment E and an application �e e��� if e and

e� are evaluated to values of the type t�
F��

� t and t�� and their evaluation behaviors are
approximated by the e�ects F and F� respectively� then �e e�� is of the type t and its
evaluation behavior is approximated by F � F� � F�� where F�� represents the evaluation
behavior of the function body�

�app� �
E � e � t�

F��

� t� F

E � e� � t�� F�

E � �e e�� � t� F� F� � F��

Note that the latent e�ect statically links functions from their de�nition sites to their
call sites� thus playing a key role in e�ect systems�

����� Veri�cation and Inference

There are two families of e�ect systems based on either veri�cation or inference� Ef�
fect veri�cation systems ask programmers to explicitly specify the types and e�ects
of some expressions in a program� and statically verify the type and e�ect correct�
ness of the program based a type checking technique� The e�ect system presented in
�Gi�ord��� Lucassen��� Hammel��� de�nes the FX programming language and uses
an e�ect veri�cation system �Jouvelot��� to check polymorphic types and side�e�ect
declarations in FX programs�

In order to spare programmers from specifying type and e�ect information� �Jouvelot
	�
Talpin
��	� introduce a new e�ect system that automatically determines the types and
e�ects for implicitly typed programs� This e�ect inference system extends classical
type inference systems �Milner��� Tofte��� with e�ect information and introduces the
notion of algebraic reconstruction and considers the type and e�ect inference issue as
a constraint satisfaction problem�

The di�erence of these two sorts of e�ect systems is represented by the �abs� rule
for the lambda abstraction� In inference systems� the type of the parameter of each



�� CHAPTER �� STATIC ANALYSIS APPROACHES

lambda abstraction is computed automatically by a reconstruction algorithm� while in
veri�cation systems� it has to be explicitly speci�ed by programmers like below �

�abs� �
E �x �� t�� � e � t� F

E � �� �x � t�� e� � t�
F
� t� �

����� Analysis Framework

E�ect systems provide a general framework for performing static analysis of programs�
Suppose we have a program written in some programming language� and we wish to
approximate at compile time some property X about the program evaluation process�
For instance� X can be the set of side�e�ects performed during the evaluation of the
program� or the time that the programs need to run� etc� We use the following three�
step process to obtain the approximation of the property X�

	� We start with a dynamic semantics for the language that precisely de�nes what
the program means� The dynamic semantics de�nes the result value V and the
property X of the program�

�� Then� we develop a static semantics that conservatively approximates the dy�
namic semantics� The static semantics de�nes the type T and e�ect F of the
program where the type T describes the data structure of the result value V � and
the e�ect F is an approximation of the property X�

�� The static semantics de�nes the static analysis we wish to perform� However the
semantic speci�cation is too abstract to tell how to compute the static informa�
tion� The �nal step is to de�ne a reconstruction algorithm that computes the
type T� and the e�ect F� of the program�

To guarantee that the static information obtained by this e�ect system is a conserva�
tive approximation of the program property� we have to prove the following correctness
results �

� The static semantics must be consistent with the dynamic semantics� which means
that the e�ect F de�ned by the static semantics is a conservative approximation
of the property X de�ned by the dynamic semantics�

� The reconstruction algorithm must be sound and complete w�r�t� the static se�
mantics� stating that� for each program� the type T� and the e�ect F� computed
by the reconstruction algorithm satisfy the static semantics and cover all types T
and e�ects F derivable by the static semantics�

����� Applications

E�ect systems have been used to perform several static analyses �Jouvelot��� Talpin
��	�
Dornic
	� Tang
�� Consel
��� E�ect systems have the following properties � �	� latent
e�ects are introduced in function types to approximate the evaluation property of func�
tions� ��� Memory locations are explicitly expressed by reference types ref �t�� which
makes them clearly manifest at compile time � ��� Types and e�ects can be expressed in



���� ABSTRACT INTERPRETATION ��

module signatures� Thanks to these properties� static analysis based on e�ect systems
can be performed in the presence of higher�order functions� imperative constructs and
separate compilation� Here we give some examples of static analyses performed by
e�ect systems�

� Side�e�ects analysis

�Talpin
��	� introduces a static side�e�ect analysis system based on a type and
e�ect inference system that approximates the memory operations like read� write
and initialize� The notion of region �Gi�ord��� is used to specify possible memory
sharing� �Talpin
���� uses an observation criterion that discards the side�e�ects
related to local data structures� thus allowing more precise side�e�ect informa�
tion� The compile�time knowledge of side�e�ects is important to parallel code
generation� A prototype compiler �Talpin
��	� has been designed that targets the
FX programming language to the Connection Machine�

� Complexity analysis

�Dornic
	� suggests an e�ect system to estimate the worst�case evaluation time
of expressions� Even if it fails to accurately approximate recursive functions� it is
helpful for choosing an e�cient load balance strategy when compiling programs
for multiprocessors�

� Binding�time analysis

�Consel
�� uses an e�ect system to determine which variables can be bound to
their values at compile time� This binding�time information is of importance
when performing partial evaluation or constant folding on programs�

� Control��ow analysis

�Tang
�� applies e�ect systems for approximating dynamic function call graphs
of functional languages at compile time� By using the type and control��ow infor�
mation� an escape analysis is performed to statically identify the free variables of
functions that outlive their de�nition scopes� which helps compilers choose an ef�
�cient closure allocation strategy� �Tang
�� introduces subtyping in e�ect systems
to avoid e�ect information to be merged together� thus improving both �exibility
and accuracy of e�ect systems� �Tang
�� introduces a more precise control��ow
analysis by extending abstract interpretation to support separate compilation
based on type and control��ow information� These control��ow analyses form
the core of this thesis�

��� Abstract Interpretation

Abstract Interpretation �Cousot��� Cousot�
� Mycroft�	� is a theory of semantics ap�
proximation which provides a powerful approach for static analysis �Mycroft�	� Deutsch
��
Goldberg
�� Shivers
	�� It is built upon the denotational semantics by approximating
the �xpoint nature of the language semantics� Denotational semantics was developed
to de�ne the formal semantic descriptions of programming languages� It uses semantic



�� CHAPTER �� STATIC ANALYSIS APPROACHES

evaluation functions which map syntactic constructs in programs to the abstract val�
ues which they denote� Since these evaluation functions are usually recursively de�ned�
they may or may not suggest a way of implementing the language�

The classical framework starts from a standard denotational semantics describing
the evaluation process of a programming language� Then an exact semantics is designed
to precisely describe the program properties� The exact semantics is often described
using �xpoints on ordered structures� Since the exact semantics is not always com�
putable� an abstract semantics is designed to approximate it� The connection between
the static and the abstract semantics is speci�ed by abstraction functions� which map
exact values to their abstract counterparts� The de�nition of the abstract function
is based on the �xpoint approximation� The static �xpoint approximation approach
simpli�es equations of the exact semantics to abstract ones that approximate the exact
semantics�
Since the abstract interpretation approach is built on the �xpoint approximation

of the exact semantic� which requires the whole structure of programs� while e�ect
systems use an uni�cation�based reconstruction algorithm that only relies on the local
structure of program syntax� abstract interpretation allows more precise static analysis
than e�ect systems� Nevertheless type and e�ect information can be easily speci�ed by
module signatures� so that e�ect systems support separate compilation more naturally�

����� Analysis Framework

Abstract interpretation provides a general framework for static analysis� Suppose we
have a program written in some programming language and we wish to approximate
at compile time some property X about the program evaluation process� We use the
following three�step procedure to obtain the approximation of the property X�

	� We start with a standard denotational semantics for the language that precisely
de�nes what the program Pmeans� The standard denotational semantics speci�es
the result value V of the program�

�� Then� we develop an exact semantics that precisely expresses the property X of the
program� We derive this exact semantics from the original standard semantics�
So� if the standard denotational semantics speci�es the evaluation result V of
the program� then the exact semantics describes its evaluation property X� which
constitutes a precise� formal de�nition of the property we want to analyze�

�� Since the precision of the exact semantics typically implies that it may be uncom�
putable at compile time� an abstract semantics is de�ned to approximate the exact
semantics� The abstract semantics de�nes the approximation �X of the evaluation
property of the program by trading accuracy for compile�time computability�

The correctness of this abstract interpretation approach requires the following cor�
rectness results �

� The equations de�ning the exact and abstract semantics have solutions�

� The abstract semantics safely approximates the exact semantics�

� The abstract semantics is computable�



���� ABSTRACT INTERPRETATION �


����� Applications

Abstract interpretation has been used for both imperative �Cousot��� Cousot�
� and
higher�order languages �Mycroft�	� Deutsch
�� Shivers
	�� It provides a basic frame�
work for performing static analysis of programming languages in presence of higher�
order functions and side�e�ects�

� Strictness analysis

�Mycroft�	� extends the idea of abstract semantics to a functional language and
uses a complex semantic structure called a powerdomain� He applies the abstract
interpretation framework to perform a static strictness analysis for normal�order
languages that identi�es opportunities to evaluate function arguments with the
call�by value rule instead of the call�by need rule without changing the result of
the program�

� Escape analysis

�Goldberg
�� presents an application of abstract interpretation for escape anal�
ysis� which helps optimize the allocation of closures� An interesting point of
this analysis is that� for any function� its type can be used to approximate its
arguments that cause the greatest escapement possible�

� Control��ow analysis

�Shivers
	� uses abstract interpretation to approximate control��ow graphs of a
higher�order language allowing side�e�ects� Programs are transformed to CPS
form �Continuation�Passing Style� so that transfers of control are uniformly rep�
resented as tail�recursive function calls� This abstract interpretation approach
can perform nth�order control��ow analysis� but fails to support separate compi�
lation�



�� CHAPTER �� STATIC ANALYSIS APPROACHES



Chapter �

Control�Flow E�ect System

Control��ow analysis can be expressed by e�ect
systems	

	�� Introduction

Control��ow analysis strives to approximate dynamic control��ow behaviors of func�
tional languages at compile time� Control��ow information can be de�ned as the set
of function names possibly called during the evaluation of expressions� This chap�
ter presents a new control��ow analysis based on e�ect systems� E�ect systems extend
classical type systems with e�ect information� By using e�ects to specify program eval�
uation behaviors� e�ect systems provide a powerful method to perform static analysis in
the presence of higher�order functions� imperative constructs and separate compilation�

In the sequel� we present our language syntax �Section ����� describe the dynamic
semantics �Section ����� de�ne a simple static semantics of control��ow analysis �Section
���� and state its consistency with respect to the dynamic semantics �Section �����
Finally we describe related work �Section ���� before concluding �Section ����� All
proofs are presented in Appendix 	�

	�� Language De
nition

My thesis focuses on a simple functional language for the simplicity of presentation�
Nevertheless it could be extended to more complicated languages including imperative
constructs� let�bindings� module constructs� etc� Possible extensions are discussed in
each chapter�

e ��� x value identi
er

��n �x� e� abstraction
�recn �f x� e� recursive function

�e e��l application

Note that function de�nitions and function calls are tagged with unique labels �n
and l� that allow to uniquely distinguish them�

�	



�� CHAPTER �� CONTROL�FLOW EFFECT SYSTEM

n � LFun � Label Label of functions

l � LCall � Label Label of function calls

How this labeling is actually performed is not important� as long as the uniqueness
property is preserved� However these labels will appear in types and� eventually� module
type signatures� so they must be easily understandable by the user� For instance� the
label of a function could consist of an identi�er �indicating the name of the module
where it is de�ned� and a number �distinguishing it from other functions in the same
module�

	�	 Dynamic Semantics

The dynamic semantics not only de�nes the values of expressions� but also keeps track
of control��ow traces occurring during their evaluation�

A computable value v is either an integer i� or a closure� The closure cl is com�
posed of the function name� the argument name� the body expression and the lexical
environment in which the function is de�ned� The environment E is a �nite map from
identi�ers to values� The control��ow behavior b of an expression is a set of function
names that are called during its evaluation� The empty set indicates the absence of
control��ow traces�

v � Value � Int  Closure value
cl � Closure � LFun 	 Id 	 Exp 	 Env closure

E � Env � Id �� Value environment
f � Trace � P�LFun� control��ow trace

The dynamic semantics is speci�ed by a set of inference rules �Plotkin�	�� Given
an environment E � it associates an expression e with the value v it computes and the
set of function names b called during its evaluation� We note �

E � e� v� b

�var� �
x � Dom�E�

E � x� E�x�� �

�abs� � E � ��n �x� e�� �n� x� e� Ex�� �

�rec� �
cl � �n� x� e� E�f �� cl��

E � �recn �f x� e�� cl� �

�app� �

E � e� �n� x� e��� E��� b
E � e� � v�� b�

E��x �� v�� � e�� � v� b��

E � �e e��� v� b� b� � b�� � fng



���� STATIC SEMANTICS ��

where for any function f � f �x �� v� is the extension of f with the property that f �x ��
v��x� � v and f �x �� v��y� � f�y�� Dom�f� is the domain of f and fx is f in which x

is unbound�
We use a simple example demo to show how control transfers during the evaluation

of the program�

demo����nf �f�
� �f ��na �a� a��la

�f ��nb �b� b��lb��
��ng �g� �g 	�lg��lf

where the lambda expression ng is bound to the variable f at the call site lf and is
applied to the arguments ��na �a� a� and ��nb �b� b� at the call sites la and lb�
At the call site la� the function ng �via f� is called by binding the identity function

na to the variable g� then control transfers to the function body of ng� where na �via
g� is applied to the argument 	 at lg� then control transfers to the function body of
na� where there is no function calls� i�e� its call set is �� Therefore� the control��ow
traces of �f ��na �a� a�� is recorded by the call set fng� nag meaning that during the
evaluation of this function application� the functions ng and na are called� Similarly
with the application �f ��nb �b� b��� its call set is fng� nbg�

In functional languages� since functions are �rst�class values� control��ow traces
de�ned by the dynamic semantics can not be determined at compile time� Therefore
we de�ne a static semantics to approximate the dynamic one�

	�� Static Semantics

For each expression the static semantics speci�es its type and a set of functions possibly
called during its evaluation�
The control��ow e�ect c abstracts the trace b in the dynamic semantics and thus

records all functions possibly called during the evaluation of an expression� A control�
�ow e�ect c can either be a constant �meaning the absence of function calls� a singleton
fng where n is a function name� or a set of function names indicated by the in�x union
operator �� A type t can either be the basic type int� or a function type t�

c
� t

where the latent control��ow e�ect c records the set of functions possibly called when
a function of this type is called� A type environment E is a �nite map from identi�ers
to types�

c � Control c �� � � j fng j c � c� control��ow e�ect

t � Type t �� � int j t�
c
� t type

E � TEnv � Id �� Type type environment

The static semantics is speci�ed by a set of inference rules� Given a type envi�
ronment E � it associates an expression e with its type t and control��ow e�ect c� We
note �

E � e � t� c

The latent control��ow e�ect is introduced in function types by the �abs� rule for
lambda abstraction and used to approximate control��ow traces of function bodies in
the �app� rule for function application� In the abstraction case� the current function



�� CHAPTER �� CONTROL�FLOW EFFECT SYSTEM

name is added to the control��ow e�ect of the lambda body� the resulting set is the
latent control��ow e�ect of the lambda expression� When such a function is applied� in
the function application� this latent control��ow information is used to determine the
functions possibly called while evaluating the function body�

�var� �
x � Dom�E�
E � x� E�x�� �

�abs� �
E �x �� t�� � e � t� c

E � ��n �x� e� � t
� fng�c� t� �

�rec� �
E �f �� t� � ��n �x� e� � t� �
E � �recn �f x� e� � t� �

�app� �
E � e � t�

c��

� t� c
E � e� � t�� c�

E � �e e�� � t� c� c� � c��

	�� Consistency Theorem

We use the proof method introduced in �Tofte��� to show that the static and dynamic
semantics are consistent with respect to a structural relation between values and types�
de�ned as the maximal �xed point of a monotonic function�

��	�� De�nition

We introduce !�" to de�ne the consistency relation between values and types� noted as
v � t� This can be easily extended to their environments�

Denition ��� �Types of Values and Environments�

i � int
�n� x� e� E� � t
 �E � s�t� E � E and E � ��n �x� e� � t
E � E 
 �x � Dom�E�� x � Dom�E� and E�x� � E�x�

The above structural property does not uniquely de�ne a relation between values
and types and must be regarded as a �xed point equation on the domain R � Value 	
Type� We de�ne a function F on P�R� �� P�R�� which for any Q  R� satis�es the
following de�nition �

F�Q� � f�v� t� � Q j
if v � i then t � int
if v � �n� x� e� E� then �E � s �t � �x � Dom�E�

x � Dom�E� and �E�x�� E�x�� � Q and E � ��n �x� e� � tg

Its �xed points are the relations on R that verify the structural property de�ned by
De�nition ��	� In order to guarantee the existence of the �xed points of F � it is su�cient
to show that F is monotonic �Stoy����



���� CONSISTENCY THEOREM ��

Lemma ��� �Monotony of F� If Q and Q� are two subsets of the domain R	

Q  Q� � F�Q�  F�Q��

��	�� Fixpoints

Since the function F is monotonic� it has a minimal and a maximal �xpoint in the
complete lattice �P�R���� namely

lfp�F� � �fQ  R j F�Q�  Qg

and
gfp�F� � �fQ  R j Q  F�Q�g

To reach the least �xpoint of F � we start from a bottom set Q � � and gradually
construct its least �xpoint lfp�F�� The set F��� consists of those relations that can be
proved without reference to any other relations� For example we have �	� int� � F���
for the F we have de�ned� Next� F�F���� contains the relations that can be proved
based on the relations already proved by F��� and so on� Since F is monotonic� the
limit of the chain

�  F���  F�F���� � � �

is the least �xpoint of F � For any relation q� q � lfp�F� if and only if q can be proved
true by F �

The maximal �xpoint �nding begins with a top set and gradually eliminates those
relations that have been proved wrong� Starting from Q � R� meaning that at the
outset F rejects nothing� F�R� is the set of relations that cannot be rejected based on
the relation in R� By using the monotonic F we have

� � �F�F�R��  F�R�  R

and the limit of this chain is the maximal �xpoint of F � For any relation q� q � gfp�F�
if and only if F can never prove q to be wrong�

Maximal �xpoints are of more interest whenever we de�ne consistency relations�
since in some cases such as in languages with side�e�ects� the least �xpoint cannot be
constructed �see �Tofte���� and the minimal �xpoint lfp�F� is strictly contained in the
maximal �xpoint gfp�F�� Therefore we choose the maximal �xpoint of the function F
to de�ne the relation between types and values�

Denition ��� �Types of Values�

v � t 
 �v� t� � gfp�F�

The subset operation  is used to de�ne the consistency between dynamic and
static control��ow information�
Using these de�nitions� we can express that the static semantics conservatively

approximates the dynamic semantics�

Theorem ��� �Consistency of Static Semantics�

E � e� v� b

E � e � t� c
E � E

����� �

�
v � t
b  c

Proof See Appendix �



�� CHAPTER �� CONTROL�FLOW EFFECT SYSTEM

	� Related Work

Shivers�s thesis �Shivers
	� presented a control��ow analysis based on abstract inter�
pretation� This analysis is more precise than the one presented here� It can distinguish
certain call contexts� but fails to support separate compilation� thus limiting its prat�
ical application� By contrast� our control��ow analysis is performed by a type and
e�ect system that supports the separate compilation of modules� but collapses all call
contexts together�

Control e�ects� de�ned in �Jouvelot�
�� are somewhat related to the control��ow in�
formation we gather here� However� these control e�ects are targeted to non�functional
behaviors� such as those created by branches or continuations� Also� this analysis is
targeted to an explicitly typed language� which allows explicit polymorphism�
The �ow analysis described in �Bondorf
��� which is used in their binding�time

analysis system� traces the �ow of function values in an untyped language� The only
information gathered there for �rst�class functions is the possible arities of functions
reaching a given program point� Since we restrict ourselves to typed languages� this
information is a special case of our type analysis� Their �ow constraint set is generated
by a one�pass compositional run over programs and solved by a rewriting system� which
has the same complexity as our type and e�ect inference system�
E�ect systems have been used to approximate program evaluation behaviors in

higher�order language� such as side�e�ects �Talpin
��	�� evaluation complexity �Dornic
	��
etc� Control��ow analysis is another application of e�ect systems�

	�� Conclusion

We presented a new control��ow analysis system based on e�ect systems� This control�
�ow e�ect system can be used in presence of higher�order functions� imperative con�
structs and separate compilation� We de�ned the dynamic semantics of the language�
described a static semantics for control��ow analysis� and stated its consistency w�r�t�
to the dynamic semantics�

If this simple static semantics is useful to lay the ground to control��ow analysis by
e�ect systems� it su�ers from shortcomings that are going to be presented and dealt
with in Chapter ���� Thus even though a reconstruction algorithm could easily be
designed for this semantics� we will delay this aspect until the next chapters�



Chapter �

Sube�ecting E�ect Systems

Sube�ecting improves �exibility of e�ect systems

but at the price of their accuracy	

��� Introduction

We extend the static semantics de�ned in Chapter � with the sube�ecting rule� Subef�
fecting allows expressions to admit larger e�ects when a type mismatch occurs� thus
improving the �exibility of the e�ect system� However it forces a function to have a
unique type in di�erent call contexts by merging their e�ects together� thus limiting
the accuracy of the e�ect system� We introduce a reconstruction algorithm that for
each expression computes its type and control��ow e�ect based on sube�ecting� The
reconstruction algorithm is sound and complete w�r�t� the static semantics�

We introduce the sube�ecting rule �Section ����� present the corresponding recon�
struction algorithm and prove it sound and complete w�r�t� the static semantics �Section
����� Finally we describe system extensions �Section ���� before concluding �Section
����� All proofs are presented in Appendix ��

��� The Sube�ecting Rule

The e�ect system de�ned in Chapter � extends classical type systems with e�ect in�
formation� However the interplay of types and e�ects introduces new constraint on
the typability of expressions� E�ect checking may force the rejection of programs that
would be type checked if no e�ects were present� thus reducing the �exibility of e�ect
systems� We use the example demo to show this problem� For clarity� we use i to
indicates the type int�

In classical type systems� since the lambda expressions ��na �a� a� and ��nb �b� b�
have the same type i� i� the variable f admits the same type �i� i�� i in its three
instances� Therefore this program can be type checked�

In the previously de�ned e�ect system� due to the introduction of the latent control�
�ow e�ects fnag and fnbg� the lambda expressions ��na �a� a� and ��nb �b� b� have

��



�� CHAPTER �� SUBEFFECTING EFFECT SYSTEMS

the di�erent types i
fnag
� i and i

fnbg� i� Therefore f cannot keep the same type at the
di�erent call contexts la and lb� Thus the program is rejected by type checking�

Sube�ecting has been used to improve the �exibility of e�ect systems �Talpin
��	�
Dornic
	� Tang
��� It allows expressions to admit larger e�ects when a type mismatch
occurs� The sube�ecting approach forces a function to have identical type in di�erent
call contexts by merging their e�ects together� thus limiting the accuracy of e�ect
systems�

Sube�ecting is introduced by the �does� rule that allows an expression to admit a
larger e�ect c instead of c�� This rule can be used whenever a type mismatch occurs in
the application rule �app� due to its latent e�ect�

�does� �
E � e � t� c�

c�  c

E � e � t� c

For the same example demo� by using the sube�ecting technique� the lambda ex�

pressions ��na �a� a� and ��nb �b� b� admit a unique type i
fna�nbg� i� Therefore f can

keep the same type �i
fna�nbg� i�

fng�na�nbg
� i at the di�erent call sites la and lb� thus this

program can be type checked� Note that sube�ecting forces the latent e�ects of the
lambda expressions ��na �a� a� and ��nb �b� b� to be merged together� thus limiting
the accuracy of e�ect systems�

��	 Sube�ecting�Based Reconstruction

We present an algorithm based on sube�ecting for reconstructing types and control��ow
e�ects of expressions� To stay as close as possible to classical uni�cation�based algo�
rithms� the basic idea is that latent e�ects of functions are always represented by e�ect
variables� Thus the type uni�cation can be applied on both type and e�ect variables�
Beside reconstructing types and control��ow e�ects of expressions� the algorithm also
computes a set of subsumption constraints between e�ect variables and control��ow ef�
fects of the form f�i � ci j i � 	��sg� Thus the reconstruction of types and control��ow
e�ects of expressions is viewed as a constraint satisfaction problem� For an expression
that admits a type and control��ow e�ect in the static semantics� its corresponding
e�ect constraint set must have at least one solution� This solution satis�es the crite�
ria of the maximality of the type with respect to substitution on type variables� and
minimality of the e�ect with respect to the subsumption on e�ect variables�

� � Constraint � P�EfVar 	 Control�

����� Uni�cation

The uni�cation algorithm U �Robinson��� solves the equations on types and e�ect
variables built by the reconstruction algorithm� It returns a substitution � as the most
general uni�er of two terms� or fails� Note that the reconstruction algorithm only uni�es
e�ect variables� Substitutions � are de�ned as maps from type or e�ect variables to
their corresponding values� We note Id is the identity substitution�



���� SUBEFFECTING�BASED RECONSTRUCTION �


� � Subst � �TyVar �� Type�  �EfVar �� Control�

U�t� t�� � case �t� t�� of

�int� int� � Id
��� ��� � �� �� ���
��� t�j�t� �� � if � � fv�t� then fail else �� �� t �

�t�
��� t��� t�

��� t��� � let � � ��� �� �� � and �� � U��t� � �t� �
in U����t �

�
� ���t �

�
����

� � � � fail

where for any substitutions � and ��� �t is the application of the substitution � to t and
��� is the composition of the substitutions with the property that ������ � ���������

Lemma ��� �Correctness of U� Let t and t� be two type terms in the domain of U 	
If � � U�t� t��� then

� U is sound  �t � �t��

� U is complete  If ��t � ��t�� there exists a substitution ��� such that �� � ����	

Proof U uni
es terms over a free algebra� and is thus complete following �Robinson���	

����� Algorithm R

Given an expression e and its type environment E � the reconstruction algorithm R
computes a substitution �� its type t� control��ow e�ect c and a constraint set �� We
note �

R�E � e� � h�� t� c� ��

The e�ect constraint set is built during the reconstruction of lambda expressions
where a latent e�ect is introduced into the function type�

R�E � x��
if x � Dom�E�
then hId� E�x�� �� �i
else fail

R�E � ��n �x� e���
let �� � new

h�� t� c� �i � R�E �x �� ��� e�

in h�� ��
�
� t� �� �� f� � c � fnggi

R�E � �recn �f x� e���
let ��� �� � new

E � � E �f �� ��
�
� ���x �� ���



�� CHAPTER �� SUBEFFECTING EFFECT SYSTEMS

h�� t� c� �i � R�E �� e�
�� � U���� t�

in h���� ������
�
� ��� �� ���� � f�� � fng � cg�i

R�E � �e e����
let h�� t� c� �i � R�E � e�

h��� t�� c�� ��i � R��E � e��
�� � new

��� � U���t� t�
�
� ��

in h������� ����� ������c� c� � ��� ������� � ���i

Note that by the uni�cation of two e�ect variables � and ��� the inequalities f� �
c� �� � c�g in the constraint set are replaced by f� � c� � � c�g� which is equivalent to
f� � c � c�g�

����� Constraint Satisfaction

An expression e with its type environment E is type and e�ect safe if and only if
R�E � e� does not fail and the returned constraint set � admits at least one solution�
The constraint set is of the normal form f�i � ci j i � 	��sg� which guarantees the
existence of solutions� We are interested at the minimal one�

The substitutions satisfying � are called e�ect models�

Denition ��� �E�ect Model� A substitution 	 is an e�ect model of a constraint

set �� noted as 	 j� �� if and only if �� � c � �� 	� � 	c	

Theorem ��� �Satisfaction� Every normal form constraint set � � f�i � ci j i �
	��sg admits at least one e�ect model	

Proof f�i �� c�i j i � 	 � � �ng is an e�ect model of �� where c�i � �n
i��ci n �

n
i���i	

A constraint set may admit more than one e�ect model� among which we are
interested in the minimal one� We de�ne a function Min to characterize the minimal
e�ect model of a constraint set �� Note that the solution is independent of the order
of inequalities in ��

Min��� � Id
Min�f� � cg � ��� � let 	 � Min���� in f� �� 	c n �g	

The constraint set of the reconstruction algorithm always admits a unique minimal
model with respect to the subsumption relation � on e�ects�

Theorem ��� �Minimality� Any constraint set admits a unique minimal e�ect model	

Proof By induction on the constraint set	



���� SUBEFFECTING�BASED RECONSTRUCTION �	

����� Correctness

The reconstruction algorithm terminates and is sound and complete with respect to
the static semantics�

Theorem ��� �Termination� For all inputs �E� e�� the algorithm R either fails or

terminates	
Proof Since the reconstruction algorithm R is de
ned on the structure of expres�

sions of 
nite height� it terminates or fails	

The soundness theorem states that the application of any e�ect model of the recon�
structed constraint set to the reconstructed type and e�ect satis�es the static semantics�

Theorem ��� �Soundness� Given an expression e and its type environment E � if

R�E � e� � h�� t� c� �i� then� for any e�ect model 	 of �� one has

	�E � e � 	t� 	c

The completeness theorem states that the reconstructed type t and control��ow
e�ect c are maximal with respect to any type t� and control��ow e�ect c� derivable by
the static semantics� for some substitution 	 that satis�es the computed constraint set
��

Theorem ��	 �Completeness� If ��E � e � t�� c�� then R�E � e� � h�� t� c� �i and

there exists an e�ect model 	 of � such that

��E � 	�E and t� � 	t and c� � 	c

����	 Example

We use the same example demo to show the reconstruction process by solving the e�ect
constraint set� Here we give the following table to show the type of the variables f� g
and the lambda expressions nf � na� nb� ng�

f � �i
��� i�

��� i

g � i
��� i

nf � ��i
��� i�

��� i�
��� i

na � i
��� i

nb � i
��� i

ng � �i
��� i�

��� i

The constraint set is of the form�

f�� � fna� nbg� �� � fngg � ��� �� � fnfg � ��g

The minimal solution of this constraint set is as below �

�� �� fna� nbg� �� �� fng� na� nbg� �� �� fnf � ng� na� nbg



�� CHAPTER �� SUBEFFECTING EFFECT SYSTEMS

��� System Extensions

The sube�ecting e�ect system can be straightforwardly extended to imperative con�
structs and let�bound expressions in a way as presented in �Talpin
��	�� A reference
type ref �t� needs to be introduced to represent updatable memory locations containing
values of the type t�
The parametric polymorphism introduced in ML type systems �Milner��� Tofte���

can be extended to e�ect systems �Talpin
��	�� The type of e� in �let �x e�� e� can be
generalized on both type and e�ect variables� if e� is side�e�ect free� Therefore its e�ect
variables can be instantiated to di�erent e�ects in di�erent call contexts� thus increasing
the accuracy of e�ect systems� �Tofte��� introduces an expansiveness function to detect
if expressions have side�e�ects or not� A non�expansive expression is syntactically
guaranteed to be side�e�ect free� By using side�e�ect analysis �Talpin
��	�� especially by
introducing an observation criterion �Talpin
����� type generalization in let�expressions
can be performed in a more precise way� One can use syntactic substitution to avoid
the complication of introducing sophisticated type schemes� We write e��e
x� for the
textual substitution of e for x in e�� The syntactic substitution e��e
x� re�ects the
fact that di�erent types of e can be used for each occurrence of x in e�� In the static
semantics� the type generalization of let expression is speci�ed by the following �let�
rule �

�let� �

�expansive��e��
E � e � t� �
E � e��e
x� � t�� c�

E � �let �x e� e�� � t�� c�

In the reconstruction algorithm� in order to avoid recomputing the type of expres�
sions bound in let constructs� we use algebraic type schemes to generalize their types
and associated constraints� Here algebraic type schemes� noted �v���n��t� ��� are com�
posed of a type t and a set of inequalities � universally quanti�ed over type and e�ect
variables v���n� Algebraic type schemes are used to implement the textual substitution
speci�ed in the let rule in the statics semantics� The type and constraint set associated
with e only depend on the free variables of e and� thereby� on the type environment
E � An algebraic type scheme caches the e�ect constraint that would have to be recom�
puted each time e appeared in the substituted body� Constrained type environments
E map value identi�ers to algebraic type schemes�

�v���n��t� �� � TyScheme type scheme

E � TEnv � Id �� TyScheme type environment

The reconstruction algorithm only needs to be modi�ed for the case of identi�ers
and let�bound expressions�

R�E � x��
if x �� �v���n��t� �� � E
then let fv�����ng new

� � fvi �� v�i j i � 	 � � �ng
in h�� �t� �� ��i

else fail



���� CONCLUSION ��

R�E � �let �x e� e����
let h�� t� c� �i � R�E � e�
in let v���n � �fv�t� � fv���� n fv�E�

E � � �Ex � fx �� �v���n��t� ��g
h��� t�� c�� ��i � R�E�� e��
in h���� t�� c�� ��i

The example program demo can be equivalently written in the let�binding form�

let�demo� �let �f ��ng �g� �g 	�lg ��

� �f ��na �a� a��la
�f ��nb �b� b��lb��

The type of the let�binding expression ��ng �g� �g 	�� can be generalized to ��������i
���

i�
��� i� ��� When it is called �via f� at the call site la and lb� it can be instantiated to

�i
��

�� i�
��

�� i and �i
���

�� i�
���

�� i respectively and the constraint set is as below�

f��� � fnag� � ��� � fnbg� � �� � fngg � ���� ���� � fngg � � ��� � �� � fnfg � � �� � ���� g

By solving the constraint set� we get the minimal solution of this constraint set �

� �� �� fnag� ���� �� fnbg� ��� �� fng� nag� ���� �� fng� nbg� �� � fnf � ng� na� nbg

Therefore the control��ow information at the call site la or lb is fng� nag or fng� nbg
respectively� With the previously de�ned sube�ecting e�ect system� the control��ow
information of �f ��na �a� a�� and �f ��nb �b� b�� are both fng� na� nbg� even if only
fng� nag or fng� nbg are called during their evaluations� thus collapsing di�erent call
contexts together�

Here we give the following table to compare the control��ow information at the call
sites la and lb collected by e�ect systems with and without the introduction of the
generic types� Note that the introduction of generic types can distinguish di�erent call
contexts �na and nb�� thus performing more precise control��ow analysis�

Dynamic Semantics Effect Systems Generic Types

la fng� nag fng� na� nbg fng� nag

lb fng� nbg fng� na� nbg fng� nbg

��� Conclusion

We introduced sube�ecting to improve the �exibility of e�ect systems� The sube�ecting
approach allows expressions to admit larger e�ects when a type mismatch occurs� We
presented the sube�ecting rule in the static semantics� discussed the reconstruction
algorithms R and proved it sound and complete w�r�t� the static semantics� Finally�
we described how to extend generic polymorphism in e�ect systems� This polymorphic
control��ow e�ect system has been implemented in a Mini�FX compiler �Grundman
��
where Mini�FX is a variant of the Scheme programming language �MIT
���



�� CHAPTER �� SUBEFFECTING EFFECT SYSTEMS



Chapter �

Subtyping E�ect Systems

Subtyping improves both �exibility and accuracy
of e�ect systems	

��� Introduction

Instead of sube�ecting� we introduce subtyping in e�ect systems� Subtyping allows a
function to have di�erent types in di�erent call contexts� as long as they obey certain
subtype relation� The subtype relation is induced by a subsumption rule on e�ects� This
subtyping e�ect system avoids e�ect information to be merged together when forcing
two types to be identical� thus collecting more precise e�ect information than the
previous e�ect system based on sube�ecting� We introduce a reconstruction algorithm
that for each expression computes its type and control��ow e�ect based on subtyping�
The reconstruction algorithm is sound and complete w�r�t� the static semantics�

We introduce the subtyping rule �Section ����� present the corresponding reconstruc�
tion algorithm and prove it sound and complete w�r�t� the static semantics �Section
����� Finally we describe related work �Section ���� before concluding �Section �����
All proofs are presented in Appendix ��

��� The Subtyping Rule

The subtype relation is de�ned between types of the same structure� The type structure
is de�ned by the classical types� A classical type � can either be int� a type variable
�� or a function type � � � � �

� � CType � int j � j � � � � classical type

An e�ect� here speci�ed by a set of function names� can be conservatively approx�
imated by one of its supersets� The sube�ect relation is thus the usual set inclusion
relation�

If two function types have the same structure� the subtype relation � is de�ned
via the inclusion relation between their latent e�ects� To properly de�ne this notion�

��



�� CHAPTER �� SUBTYPING EFFECT SYSTEMS

we introduce the Erase function which transforms types to classical types by deleting
latent e�ects�

Erase�int� � int
Erase��� � �

Erase�t�
c
� t� � Erase�t��� Erase�t�

The type structure of t is Erase�t�� Two types t and t� have the same structure if and
only if Erase�t� � Erase�t���

The subtype relation t � t� is de�ned whenever t and t� have the same structure�
Note that the subtype relation between function types is contravariant�

Denition 	�� �Subtype�

int � int

� � �

t��
c�� t� � t��

c�� t� 
 t�� � t�� � t� � t� � c� � c�

The function E� generates the set of e�ect inequalities corresponding to a given
type inequality� An e�ect inequality is a pair �ci� c

�
i� written ci � c�i�

E� �int � int� � �
E� �� � �� � �

E� �t��
c�� t� � t��

c�� t�� � fc� � c�g � E� �t�� � t��� � E� �t� � t��

Subtyping is introduced by the following �sub� rule that allows a larger type t to
be used in lieu of t�� This increases the �exibility of the static semantics by allowing a
function to admit di�erent types� as long as a certain subtype relation is satis�ed� It
avoids merging e�ect information together when forcing two types to be identical� thus
collecting more precise e�ect information than the sube�ecting technique�

�sub� �
E � e � t�

t� � t

E � e � t

We use the same example demo to show how subtyping improves the accuracy of
e�ect systems compared to sube�ecting� When the function f �bound to ng� is called

at la and lb� it can admit the supertypes �i
fnag
� i�

fng�na�nbg
� i and �i

fnbg
� i�

fng�na�nbg
� i

respectively instead of having the unique type �i
fna�nbg
� i�

fng�na�nbg
� i� The following

table shows the di�erence between sube�ecting and subtyping� We give the types of f
at these three occurrences �tf � t

�
f and t��f �� and the types of the arguments na and nb

�tna and tnb�



���� SUBTYPING�BASED RECONSTRUCTION ��

Subeffecting Subtyping

tf �i
fna�nbg
� i�

fng�na�nbg
� i �i

fna�nbg
� i�

fng �na�nbg
� i

t�f �i
fna�nbg
� i�

fng�na�nbg
� i �i

fnag
� i�

fng�na�nbg
� i

tna i
fna�nbg
� i i

fnag
� i

t��f �i
fna�nbg
� i�

fng�na�nbg
� i �i

fnbg
� i�

fng�na�nbg
� i

tna i
fna�nbg� i i

fnbg� i

tf � t�f tf � t�f
tf � t��f tf � t��f

Notice that� when using sube�ecting� all occurrences of f are forced to have the
same type� while� when using subtyping� they only have to obey a subtype relation�
leading to more precise local control��ow information�

��	 Subtyping�Based Reconstruction

The reconstruction of types and e�ects based on subtyping operates on the expressions
that are already typed by classical type systems� For each expression e annotated with
classical types� the reconstruction algorithm S computes its type� its e�ect and a set of
type inequalities based on subtyping� Since the subtype relation in our system is de�ned
by the subsumption relation on e�ects and the structures of the types are known� type
inequalities amount to sets of e�ect inequalities� Therefore solving type inequalities
is reduced to solving the corresponding e�ect inequalities� Thus the subtyping�based
reconstruction can be also viewed as an e�ect constraint satisfaction problem� For
every expression that has a type and a control��ow e�ect in the static semantics� its
e�ect constraint set must have at least one solution� which satis�es the set of type
inequalities�

For any expression e� the classical type reconstruction algorithm computes its prin�
cipal type � w�r�t� the types t de�ned by the static semantics �modulo Erase�� In other
words� for any expression� if � is its type computed by the classical type reconstruc�
tion algorithm and t is derivable from the static semantics� then there exists a type
substitution �� such that �

Erase�t� � ��

	���� Algorithm S

Given a type environment E and an expression e assumed priorly decorated with its
classical type �we use a straightforward expression annotation mechanism to express
this information in the algorithm�� the reconstruction algorithm S computes a type t�
an e�ect c and an e�ect constraint set �� We note �

S�E � e� � ht� c� �i

The e�ect constraint set is partly built by application of E� to type inequalities and
partly during the reconstruction of lambda and rec expressions�



�� CHAPTER �� SUBTYPING EFFECT SYSTEMS

S�E � x��
let t� � E�x�

t � New�Erase�t���
in ht� ��E� �t� � t�i

S�E � ��n �x � �� e���
let t� � New���

� new

ht� c� �i � S�E �x �� t��� e�

in ht�
�
� t� �� �� f� � fng � cgi

S�E � �recn �f � �
� � � x � � �� e���

let t�
�
� t � New�� � � ��

ht��� c� �i� S�E �f �� t�
�
� t��x �� t��� e�

in ht�
�
� t� �� �� E� �t�� � t� � f� � fng � cgi

S�E � �e e����

let ht��
c��

� t� c� �i � S�E � e�
ht�� c�� ��i � S�E� e��

in ht� c� c� � c��� � � �� � E� �t� � t���i

where the function New transforms a classical type � to a type t by adding fresh latent
e�ect variables to � � Its proper de�nition is�

New�int� � int

New��� � �

New�� � � �� � New�� ��
�
� New��� for fresh �

Note that sube�ecting can be easily related to subtyping by noticing that its related
reconstruction algorithm R is similar to S� except that � is replaced by the more
restrictive �� implemented by uni�cation�

	���� Properties of S

We can easily prove by induction that the reconstruction algorithm S has the following
properties �

Lemma 	�� �Properties of S� For any E� e� if S�E � e� � ht� c� �i� then 

� t only includes fresh e�ect variables	

� All environment extensions within S refer to types with only fresh e�ect variables	

The previous lemma implies that the constraint set computed by the reconstruction
algorithm S has the following normal form property�

Lemma 	�� �Normal E�ect Constraints� If S�E � e� � ht� c� �i� then � has the fol�
lowing normal form

f�i � ci j i � 	��sg



���� SUBTYPING�BASED RECONSTRUCTION �


As stated in Chapter �� e�ect constraint sets in this normal form guarantee the
existence of unique minimal e�ect models� The following lemma shows how to satisfy
a type inequality by solving its corresponding e�ect constraint�

Lemma 	�� �Solution of Type Inequality� If t and t� have the same structure�
then

	 j� E� �t� � t�
 	t� � 	t

Proof By induction of the structure of types	

	���� Correctness

Since the reconstruction algorithm S is de�ned by induction on the structure of expres�
sions� which are of �nite height� it always terminates� It is sound and complete with
respect to the static semantics�

The soundness theorem states that the application of any e�ect model of the re�
constructed type constraint set to the reconstructed type and e�ect satis�es the static
semantics�

Theorem 	�� �Soundness� Given an expression e and its type environment E � if

S�E� e� � ht� c� �i� then for any e�ect model 	 of �� one has

	E � e � 	t� 	c

The completeness theorem states that the reconstructed type t and the control��ow
e�ect c are maximal with respect to any type t� and control��ow e�ect c� derivable from
the static semantics� modulo some substitution 	 that satis�es the computed constraint
set ��

Theorem 	�� �Completeness� If ��E � e � t�� c�� then S�E� e� � ht� c� �i and there

exists an e�ect model 	 of �� such that

��E � 	E and 	t � t� and c� � 	c

	���� Example

We use the same example demo to show how the reconstruction algorithm S works
for expressions already typed with classical types� After applying the classical type
reconstruction algorithm� the program demo is annotated by classical types like below �

demo�annotated����nf �f � �i� i�� i�
� �f ��na �a � i� i� a��la

�f ��nb �b � i� i� b��lb� �

��ng �g � i� i� �g 	�lg�lf �

We apply the algorithm S to demo�annotated� Here we give the following table to
show the type of the variable f� g and the lambda expression na� nb� ng� nf � Note that
the variable f has di�erent types in its three occurrences lf � la and lb�



�� CHAPTER �� SUBTYPING EFFECT SYSTEMS

f�lf � � �i
��� i�

��� i

f�la� � �i
��

�� i�
��

�� i

f�lb� � �i
���

�� i�
���

�� i

g � i
��

g
� i

na � i
�a
� i

nb � i
�b� i

ng � �i
��

g
� i�

�g
� i

nf � ��i
��� i�

��� i�
��� i

The constraint set is the union of following inequalities�

E� ��i
��� i�

��� i � �i
��

�� i�
��

�� i��
�a � fnag�

E� �i
�a
� i � i

��

�� i��

E� ��i
��� i�

��� i � �i
���

�� i�
���

�� i��
�b � fnbg�

E� �i
�b� i � i

���

�� i��
�� � fnfg � ��� � ���� �
�g � fngg � ��g�

E� ��i
��

g
� i�

�g
� i � �i

��� i�
��� i�

which is equivalent to �

f� �� � ��� �� � ����

�a � fnag�
��� � �a�

���� � ��� �� � ���� �
�b � fnbg�
���� � �b�
�� � fnfg � ��� � ���� �

�g � fngg � ��g�

�� � �g� ��g � ��g



���� RELATED WORK �	

The minimal solution of this constraint set is as below �

�a �� fnag�
�b �� fnbg�
��� �� fnag�
���� �� fnbg�
�� �� fna� nbg�
��g �� fna� nbg�
�g �� fna� nb� ngg�
�� �� fng� na� nbg�
��� �� fng� na� nbg�
���� �� fng� na� nbg�
�� �� fnf � ng� na� nbg

��� Related Work

Subtyping �Cardelli��� adds �exibility to type systems by allowing type coercions to
be performed if a type mismatch occurs� It relaxes the form of the type constraints
from equations X � Y to inclusions X  Y � The subtyping problem is reduced to
the question of whether a system of inclusion constraints has a solution� However
there have been no general results on solving inclusion constraints� The algorithms for
type inference based on solving inclusion constraints are quite restrictive �Wand���
Stansifer��� Aiken
�� Fuh��� Benjamin
��� The subtyping e�ect system limites the
subtype to a subsumption relation on e�ects� If classical types of expressions are known�
the subtyping�based type and e�ect inference is reduced to solving e�ect constraints�

Subtyping in e�ect systems has been previously introduced in explicitly typed lan�
guages �Gi�ord��� Consel
��� There� a subsumption rule similar to the one presented
above was used� but since only type checking was performed� its treatment was simpler
than ours� The subtyping approach introduced in my thesis shows that type and e�ect
reconstruction may be performed in an implicitly typed language�

Previous e�ect systems �Talpin
��	� Dornic
	� Tang
�� have used sube�ecting that
forces a function to have an identical type in di�erent call contexts� My thesis in�
troduces subtyping that allows the same function to have di�erent types for di�erent
function calls� as long as they obey certain subtype relation� This subtyping e�ect

system avoids e�ect information to be merged together when forcing two types to be
identical� thus improving the accuracy of e�ect systems based on sube�ecting�

��� Conclusion

We introduced subtyping in e�ect systems that allows a function to have di�erent types
in di�erent call contexts� as long as they obey certain subtype relation� This subtyping
e�ect system avoids e�ect information to be merged together when forcing two types
to be identical� thus collecting more precise e�ect information than the previous e�ect
system based on sube�ecting� We de�ned the subtype relation� presented the subtyping
rule in the static semantics� discussed the reconstruction algorithms S and proved it
sound and complete w�r�t� the static semantics�



�� CHAPTER �� SUBTYPING EFFECT SYSTEMS



Chapter �

Separate Abstract

Interpretation

Type and e�ect information can be used to ex�

tend abstract interpretation in the context of
separate compilation	

�� Introduction

Abstract interpretation is another basic method for performing static analysis of pro�
grams� It is based on denotational semantics by approximating the �xpoint nature of
the language semantics� If the abstract interpretation approach performs more precise
static analysis due to its more operational nature� e�ect systems support separate com�
pilation more naturally via module signatures� We introduce the new notion of separate
abstract interpretation that combines two approaches in a single framework� It extends
abstract interpretation in the context of separate compilation based on the type and
e�ect information of module signatures� Types� enriched with e�ect information� are
used to conservatively approximate abstract values of the free variables of programs�
thus enabling abstract interpretation to be performed on non�closed expressions� We
use control��ow analysis as a motivating example of this new idea�
Shivers� thesis �Shivers
	� presents a control��ow analysis based on abstract in�

terpretation� Since a CPS form is used as intermediate representation of programs�
control transfers are uniformly represented as tail�recursive function calls� Since this
abstract interpretation approach is built on the �xpoint approximation technique� it
can distinguish between call environments� thus allowing precise control��ow analysis�
Nevertheless �xpoint approximation requires the syntax of function bodies to be known
and thus fails to support separate compilation�
Separate abstract interpretation use type and control��ow information to approx�

imate abstract values of free variables in an expression� The basis of the separate
abstract interpretation approach is that the abstract semantics of control��ow analysis
de�ned in Shivers� thesis is consistent with the e�ect semantics used in e�ect systems�
Types describe the structure of values� In particular� from the latent de�nition d of

��



�� CHAPTER 	� SEPARATE ABSTRACT INTERPRETATION

a function type t�
d
� t� one can determine the set of functions this type may corre�

spond to� together with their control��ow behavior� From such types� one can de�ne
conservative approximations of abstract values which are used to pursue the abstract
interpretation� We have proved that this new static system conservatively extends the
abstract interpretation system and retains all its properties� The control��ow analysis
expressed by separate abstract interpretation is as precise as the abstract interpretation
approach on closed expressions� but is also able to tackle expressions with free variables
by using type and control��ow information to approximate their abstract values�

In the remainder of the chapter� we give the syntax and semantics of CPS programs
�Section ����� describe an abstract interpretation for control��ow analysis �Section �����
adapt the type and e�ect system of Chapter � to CPS programs �Section ����� show
how these two techniques can be merged together �Section ���� to perform separate
abstract interpretation �Section ����� discuss optimizations for increasing its �exibility
and accuracy �Section ����� discuss the related work �Section ����� before concluding
�Section ��
�� All proofs are presented in Appendix ��

�� Dynamic Semantics

����� CPS Syntax

Since Shivers�s abstract interpretation approach uses CPS�transformed programs� we
need to de�ne an extended syntax for CPS programs� The main di�erence with the
language de�ned in Chapter 	 is the introduction of binary functions �to deal with
continuation arguments� and the restriction of arguments to self�evaluating expressions�

a ��� x value identi
er
��n �x k� e� user�de
ned function
��n �x� e� continuation function

e ��� �a a� a���l function application

�a a��l continuation application

User�de�ned functions are always binary� while continuation functions are unary� In
the sequel� without loss of generality� we only specify the semantics of unary functions
and calls� By convention� we use k as identi�ers of continuation functions�

����� De�nition

The dynamic semantics not only de�nes the values of expressions� but also keeps track of
control��ow information during evaluation� We restrict the presentation of the dynamic
semantics to CPS expressions�

Following �Shivers
	�� we use the notion of contours to keep track of scoping in�
formation� A contour b is a list of labels of function calls describing the current call
path� A contour environment �also called a call environment� � maps any variable to
the call path that precedes its actual value binding� A value v is either an integer or a
closure� A closure cl is composed of a lambda expression �including the function label�
argument name and function body� and contour environment� A binding environment



	��� DYNAMIC SEMANTICS ��

E is a �nite map from pairs of identi�ers and contours to values� recording the bindings
of identi�ers in a given contour�

b � Contour � LCall� contour
� � ContourEnv � Id �� Contour contour environment
v � Value � Int  Closure value

cl � Closure � Fun 	 ContourEnv closure
E � Binding � Id 	 Contour �� Value binding environment

The control��ow information records the set of functions called at a given call
environment� It is de�ned as a set of tuples f�l� �� s�g where the functions in s are
called at call site l and the call environment �� we write such tuples f�l� ��� sg� In
the dynamic semantics� this set is always a singleton� We use sets to be compatible
with the subsequent non�standard semantics� where they usually have more than one
element� The emptyset � indicates the absence of control��ow information�

c � Control � P�LCall 	 ContourEnv 	 P�LFun�� control��ow information

The dynamic semantics is speci�ed by a set of inference rules �Plotkin�	�� The usual
value environment is split in Shivers� approach in two components� a contour environ�
ment � and a binding environment E� The purpose of this uncoupling is to separate
the syntactic component of closures from their semantic aspect� This is of outmost
importance when performing abstract interpretation where this syntactic component
is furthermore restricted to �nite expressions�

The inference rule ��E � a � v associates the argument a in the contour envi�
ronment � and global binding environment E with the value v it evaluates to� In the
�var� rule� the value of x is retrieved from the binding environment E according to the
contour where it was bound �recorded by the current contour environment ��� In the
�abs� rule� the closure is built with its lambda expression and current contour environ�
ment� Note that since abstraction expressions are uniquely identi�ed by their function
label� we use the function label n instead of the lambda expression�

�var� � ��E � x� E�x� ��x��

�abs� � ��E � n� �n� ��

The inference rule b� �� E � e � v� c associates the function application e in the
current contour b� contour environment � and global binding environment E with �	�
the value v it evaluates to and ��� the control��ow information c recording the control�
�ow traces during its evaluation� In the �app� rule� control reaches the function call
site l in the contour environment �� binding environment E and contour b� where
the function n is called� Then control enters the function body e� whose control��ow
information is c� Note that the binding environment E is global to the whole expression
evaluation�

�app� �

��E � a� ��n�x� e� ���
��E � a� � v�

b� � b�l

b�� ���x �� b��� E � e� v� c
E�x� b�� � v�

b� �� E � �a a��l � v� c� f�l� ��� fngg



�� CHAPTER 	� SEPARATE ABSTRACT INTERPRETATION

�	 Abstract Interpretation Semantics

In Shivers� thesis� �rst�order control��ow analysis �	CFA� is performed with an abstract
interpretation� The contour of the dynamic semantic� which is a call path� is abstracted
to a single call site� which is the last element of the call path� Shivers uses a denotational
approach for specifying his analysis� we give here a new presentation of this technique
using an operational framework which allows us to merge it nicely with the type and
e�ect approach �see Section �����

����� De�nition

The abstract domains correspond to those in the dynamic semantics� except that�
since control��ow analysis only deals with functions and ignores integers� values are
abstracted to sets of abstract closures� The empty set � represents any integer�

�b � dContour � LCall contour
�� � dContourEnv � Id �� dContour contour environment

�v � dValue � P� dClosure� valuebcl � dClosure � Fun 	 dContourEnv closure
�E � dBinding � Id 	 dContour �� dValue binding environment

�c � dControl � P�LCall 	 dContourEnv 	 P�LFun�� control��ow information

The inference rule ��� �E � a� �v associates the argument a in the contour environ�
ment �� and global binding environment �E with the value �v it evaluates to�

�var� � ��� �E � x� �E�x� ���x��

�abs� � ��� �E � n� f�n� ���g

The inference rule ��� �E � e � �v� �c associates the function application e in the
contour environment �� and global binding environment �E with �	� the value �v it eval�
uates to and ��� the control��ow information �c� In the �app� rule� when control reaches
the function call site l in the contour environment �� and binding environment �E� the
function a is evaluated to a set of closures� while the actual argument a� is evaluated
to its value �v�� Each function ni is possibly called at l at the call environment �� from
which control transfers to its function body ei� Note that� compared to the dynamic

semantics� the call path �b
�
is limited to a single call site� so� calls to the same function

but in di�erent environments in the dynamic semantics may get merged together�

�app� �

��� �E � a� f��ni�xi� ei�
��
�
i� j i � 	 � � �rg

��� �E � a� � �v�

�b
�
� l

��
�
i�xi �� �b

�
�� �E � ei � �vi� �ci

�E�xi��b
�
� � �v�

�
i � 	 � � �r

��� �E � �a a��l � �r
i���vi��

r
i����ci � f�l�

���� fnigg�

where �xi �� vi j i � 	��n� is shorthand for ���x� �� v������xn �� vn� and �� is the empty
constant function�



	��� ABSTRACT INTERPRETATION SEMANTICS ��

����� Correctness

Since the abstract interpretation semantics is de�ned on �nite domains� it terminates�
We prove it is well�formed and consistent w�r�t� the dynamic semantics�

Contour environments ��� global binding environments �E and abstract values �v are
related� We de�ne a well�formedness relationWF between them that ensures that free
variables of abstract closures are appropriately bound�

Denition 
�� �Well�Formedness�

WF��v� �E� 
 ��n� ��� � �v� WF���� �E�

WF���� �E� 
 �x � Dom����� �x� ���x�� � Dom� �E� � WF� �E�x� ���x��� �E�

Using this de�nition� we prove that the abstract interpretation semantics is well�formed�

Lemma 
�� If ��� �E � a� �v and WF���� �E�� then WF��v� �E�	
Proof By direct application of De
nition �	�	

Theorem 
�� �Well�Formedness of Abstract Semantics� If ��� �E � e� �v� �c and
WF���� �E�� then

� ��v� �E� is well�formed	

� All ���
�
� �E

�
� used in the � derivation tree of e are well�formed	

We de�ne the � relation as an approximation relation between abstract values�

��v� �E� � ��v�� �E
�
� if ��v�� �E

�
� is a conservative approximation of ��v� �E�� This relation can

be straightforwardly extended to compare exact and abstract values�

Denition 
�� �Consistency of Abstract Values� For the well�formed ��v� �E� and

��v�� �E
�
��

��v� �E� � ��v�� �E
�
� 
 ��n� ��� � �v� ���

�
� s�t� �n� ��

�
� � �v� � ���� �E� � ���

�
� �E

�
�

���� �E� � ���
�
� �E

�
� 
 �x � Dom����� x � Dom���

�
� � � �E�x� ���x��� �E� � � �E

�
�x� ��

�
�x��� �E

�
�

We next de�ne thev relation as an approximation relation between abstract control�
�ow e�ects� c v c� if c� is a conservative approximation of c� In other words� c is a
more precise control��ow information than c��

Denition 
�� �Accuracy of Abstract E�ects�

c v c� 
 ��l� ���� s � c� ���
�
� s� s�t� �l� ��

�
�� s� � c� � s  s�

Using the previous de�nitions� we can express that the abstract semantics safely ap�
proximates the dynamic one for both arguments and expressions�

Lemma 
��

��E � a� v
��� �E � a� �v

���E� � ���� �E�

����� � �v� E�� ��v� �E�

Proof By direct application of De
nition �	�	

Theorem 
�� �Consistency of Abstract Semantics�

b� �� E � e� v� c
��� �E � e� �v� �c

���E� � ���� �E�

����� �

�
�v� E�� ��v� �E�
c v �c



�� CHAPTER 	� SEPARATE ABSTRACT INTERPRETATION

�� E�ect System Semantics

We designed in Chapter � an e�ect system to perform �th�order control��ow analysis
in which all call environments are collapsed together� We adapt below this system to
CPS expressions�

����� De�nition

A type t can either be the basic type int� a user�de�ned function type �t� 	 t���
d
� t or

continuation function type t�
d
� t� The latent de
nition d is a set of possibly aliased

functions ni of the same data type� together with their control��ow e�ect #ci� A type
environment E is a �nite map from identi�ers to types�

d � Def � f�n� #c�g j d� � d function de
nition

t � Type � int j �t� 	 t���
d
� t j t�

d
� t type

E � TEnv � Id �� Type type environment

#c � dControl
The control��ow e�ect #c of an expression records all the function calls that possibly

occur during its evaluation� Since this type and e�ect semantics does not keep track of
call environments� all contour environments that appear in the domain of control��ow
e�ects are unknown� and thus denoted by the empty constant function ���

The inference rule E � a � t associates the argument a in the type environment
E with its type t� In the �abs� rule� the function label n paired with its control��ow
e�ect #c is added to the latent de�nition d of the function type� These rules use implicit
sube�ecting by adding more functions to d� thus allowing functions of the same data
type to be gathered together� This can be used whenever a type mismatch occurs in
an application�

�var� � E � x � E�x�

�abs� �

Ex�x �� t�� � e � t� #c
�n� #c� � d

E � ��n �x� e� � t
� d
� t

The inference rule E � e � t� #c associates the function application e with its type t
and control��ow e�ect #c� In the �app� rule� the latent de�nition of the function type is
used to determine all the functions n possibly called at the call site l and their possible
control��ow e�ect #c�

�app� �
E � a � t�

d
� t

E � a� � t�

E � �a a��l � t���n�#c��d�#c� f�l� ���� fngg�

����� Correctness

We prove that the type and e�ect semantics is a conservative approximation of the
abstract semantics� which means that the abstract interpretation performs more precise
control��ow analysis than the e�ect system�



	��� APPROXIMATING ABSTRACT VALUES �


To de�ne the consistency between the abstract interpretation and the e�ect system�
we introduce the !�" relation between abstract values� abstract environments and types�
noted as ��v� �E� � t� This can be easily extended to environments�

Denition 
�� �Types of Abstract Values� For the well�formed ��v� �E��

��� �E� � int

��v� �E� � t 
 ��n� ��� � �v� �E � s�t� ���� �E� � E � E � n � t

���� �E� � E 
 �x � Dom����� x � Dom�E� � � �E�x� ���x��� �E� � E�x�

Using these de�nitions� we can express that the type semantics conservatively approx�
imates the abstract semantics for both arguments and expressions�

Lemma 
��

E � a � t
��� �E � a� �v

���� �E� � E

����� � ��v� �E� � t

Proof By direct application of De
nition �	�	

Theorem 
�� �Types of Abstract Semantics�

E � e � t� #c
��� �E � e� �v� �c

���� �E� � E

����� �

�
��v� �E� � t
�c v #c

�� Approximating Abstract Values

As stated before� control��ow analysis by abstract interpretation is more precise than
the one based on the type and e�ect inference system since it distinguishes between
call environments� It however fails to support separate compilation because the value
environments �� and �E are unknown for separately compiled expressions� Note that the
type environment E would be available in this setting�

��	�� Approximation Function A

The key idea is to determine a priori the unknown abstract value environment from the
type environment� therefore extending the abstract interpretation technique to support
separate compilation� The approximation function A takes a type t and returns its
abstract value �v� along with a binding environment �E that binds the free variables of �v�
Abstract closures are thus either built from actual function de�nitions or approximated
from function types�
The type int denotes integers� its abstract value is thus � and its binding environ�

ment ���

A�int� � ��� ���

The function type �t� 	 t��
d
� t�� where d is f�ni� #ci� j i � 	 � � � qg� describes a set

of user�de�ned functions ni with their control��ow e�ect #ci possibly occurring when



�� CHAPTER 	� SEPARATE ABSTRACT INTERPRETATION

calling ni� Since the program is in CPS form� t� is a continuation type t
d�

� t� where t is
the type of the result value passed to the �nal continuation� Thus the abstract value �v�

corresponding to the function type is a set of closures f��ni�x ki� ei�� ��i j i � 	 � � � qg in
which the body ei simulates the control��ow e�ect #ci and the contour environment ��i

binds a fresh variable xi to a fresh coutour li� The binding environment �E
�
correspond�

ing to the function type maps the pair xi and li to the abstract value �v corresponding

to the return type t� By binding xi to �v in �E
�
and applying� in ei� the �nal continua�

tion ki to xi �see below�� the abstract value �v of the result type is passed to its �nal
continuation ki�

A��t� 	 t��
d
� t�� � let fxig� flig and l fresh

t� � t
d�

� t�
��v� �E� � A�t�
feig � fS�#ci� ki� xi� l�g
�v� � f��ni�x ki� ei� �xi �� li�� j i � 	 � � � qg
�E
�
� �E��xi� li� �� �v j i � 	 � � � q�

in ��v�� �E
�
�

where

d � f�ni� #ci� j i � 	 � � � qg
#ci � f�lj � ���� fnj� � � �njrg j j � 	 � � �sg

Each closure body ei simulates the control��ow e�ect #ci where� for each call site lj �
all njk functions may be called� The expression S�#c� k� x� l� simulates the control��ow
e�ect #c and� eventually� applies the continuation k to the result x at call site l� It is
de�ned by induction on control��ow e�ects as below�

S���� k� x� l� � �k x�l
S�#c� � f�l�� ���� fn� � � �nrgg� k� x� l� � S��fn� � � �nrg� #c�� l�� k� x� l�

S���� #c�� l�� k� x� l� � S�#c�� k� x� l�
S��s� � fn�g� #c�� l�� k� x� l� � � ��n��k�� S��s�� #c�� l�� k� x� l�� k �l�

where k� is fresh

At each call site l� in #c� the function S calls S� which is recursively de�ned on the set
of functions fn� � � �nrg possibly called at l

�� Simulating the behavior of #c may require
replicating call site labels� this is nonetheless acceptable here since this abstract value
is automatically generated�

This general de�nition of S being somewhat notationally confusing� we give below
an example of a closure body for the simple control��ow e�ect #c�

#c � f�l�� ���� fn�g� �l�� ���� fn�� n�gg

where the number of call sites is limited to two� and each call site can only call one or
two functions� The corresponding closure body S�#c� ki� xi� l� is then�



	��� APPROXIMATING ABSTRACT VALUES �	

� ��n��k��
� ��n� �k��

� ��n� �k��
�ki xi�l�

ki �l��
ki �l��

ki �l�

��	�� Correctness of A

The approximation function A has the following properties �

Lemma 
�� �Well�Formedness of A�t�� A�t� is well�formed	

Note that the abstract values �v� de�ned by A include simulated call environments
whose domains contain only fresh variables� We thus extend the approximation relation
� to compare the abstract values and the approximated ones in the following way�

Denition 
�	 �Consistent Abstract Values� For the well�formed ��v� �E� and ��v�� �E
�
��

if ��v�� �E
�
� is de
ned via A� then

��v� �E� � ��v�� �E
�
� 
 ��n� ��� � �v� ���

�
� s�t� �n� ��

�
� � �v�

Using this extended de�nition� we get�

Lemma 
�	 �Consistency of A�t�� If ��v� �E� � t� then ��v� �E� � A�t�

Since simulated call environments do not correspond to actual call environments� we
de�ne� for the purpose of comparing them� a function D that deletes these simulated
environments in the control��ow e�ects obtained by abstract interpretation�

D���� � ��

D��c� f�l� ���� sg� � D��c� � f�l� ���� sg

Using the initial identity continuation Id at a given call site lk� the abstract inter�
pretation of any of the q expressions ei� built by the function S from the control��ow
e�ect #ci given by the type semantics� yields a control��ow e�ect �ci which� modulo D�
is the same as #ci�

Lemma 
�
 �Simulation� For any ��� and �E�� if

����xi �� li��ki �� lk�� �E���xi� li� �� �v���ki� lk� �� fIdg� � S�#ci� ki� xi� l�� �v� �ci

then D��ci� � #ci � f�l� ���� fIdgg	



�� CHAPTER 	� SEPARATE ABSTRACT INTERPRETATION

� Separate Abstract Interpretation

Separate abstract interpretation uses types and e�ects to compute conservative approx�
imations of abstract values of the free variables occurring in a separately compiled CPS
expression e� These values are used to create initial environments in which the classical
abstract interpretation is performed� These initial abstract value environments ��� and
�E� are de�ned via the function A� based on the type environment E of e�

Given a CPS expression e� its initial contour environment ��� maps free variables
to the fresh call site labels� since their actual binding call sites are unknown� Its initial
binding environment �E� is de�ned not only on the free variables of e� but also on
those introduced by A� these additional identi�ers are bound in the additional binding
environments �E given by A�

��� � �x �� l j x � Dom�E� � fresh l�

�E� � �
x�Dom�E� � ��v� �E��A�E�x��

�E��x� ����x�� �� �v�

where � is the function union with the property that �f � g��x� � f�x� � g�x��

The approximated initial environments have the following properties� corresponding
to those of the approximation function A�

Lemma 
�� �Well�Formedness of ����� �E��� ����� �E�� is well�formed	

Lemma 
�� �Consistency of ����� �E��� If ���
�
�� �E

�
�� � E � then ���

�
�� �E

�
�� � ����� �E��

Classical abstract interpretation can then simply be applied on e with these ap�
proximated initial environments�

���� �E� � e� �v� �c

to implement the notion of separate abstract interpretation� Thanks to these approx�
imated environments� we extended the abstract interpretation approach to support
separate compilation� This new interpretation enjoys all the properties of the abstract
interpretation semantics presented above� i�e� it terminates and is well�formed� It is
thus a conservative approximation of abstract interpretation�

Theorem 
�� �Separate Abstract Interpretation� Separate abstract interpretation

is a conservative extension of abstract interpretation	

�� Optimizations

���� Subtyping E�ect Systems

As stated in Chapter �� subtyping can be introduced to improve the accuracy of e�ect
systems based on sube�ecting� Therefore we can extend abstract interpretation with
subtyping e�ect systems to perform more precise control��ow analysis�



	�
� OPTIMIZATIONS ��

���� Flexibility of Abstract Semantics

The abstract interpretation semantics de�ned in Section ��� restricts a lambda expres�
sion n in the value environment ��� �E to a singleton f�n� ���g� which limits the number of
programs derivable by the abstract semantics� To increase the �exibility of the abstract
semantics� we could adjust �abs� rule to �abs ��� which allows a lambda expression to
admit a larger abstract value as long as its type is persevered�

�abs �� �

� ��� �E� � E
E � n � t

WF��v� �E�

��v� �E� � t
��� �E � n� f�n� ���g � �v

By direct application of De�nition ��	 and De�nition ���� we can see that the �abs ��
rule preserves the properties of �abs�� namely �	� well�formedness� i�e� if WF���� �E��
then WF�f�n� ���g � �v� �E� and ��� typability� i�e� �f�n� ���g � �v� �E� � t� Thus this
new abstract semantics enjoys all of the properties �see Section ��� and Section ���� of
the previous abstact semantics� but is more �exible� It terminates� is well�formed� is
a conservative approximation of the dynamic semantics� and is more precise than the
type semantics�

���� Local Control
Flow E�ects

Even though the previously described approximation function A enables abstract in�
terpretation to be applied in the presence of separate compilation� it has the major
drawback of limiting its accuracy� Indeed� in the function types of CPS expressions� the
control��ow e�ects in their latent de�nitions d represent not only the local control��ow
e�ects of function bodies but also�via �nal continuation calls� those of the continuation
of the program� Consequently� the accuracy of separate abstract interpretation is only
as good as the one of the type and e�ect analysis�

To improve the analysis requires the use of A on types restricted to local control�
�ow e�ects� This can be achieved by computing the abstract values of the free variables
on the basis of their direct� non�CPS type in the following way�

Using the previous notations� the continuation type t� � t
d�

� t�� where d� �
f�n�i� #c

�
i� j i � 	 � � �pg� describes a set of continuation functions n

�
i and their control��ow

e�ect #c�i� User�de�ned functions of type �t
� 	 t��

d
� t�� where d � f�ni� #ci� j i � 	 � � � qg�

accept continuations of type t�� beside the argument of type t
�� The control��ow e�ects

#ci of their bodies include the control��ow e�ects that correspond to applying the �nal
continuation to their result� By subtracting this control��ow e�ect �r

i��#c
�
i from #ci� the

remaining e�ect only corresponds to the local control��ow e�ect of the body of the
function ni� This is equivalent to the control��ow e�ect recorded in the corresponding
direct function type� if one ignores all continuation calls in CPS types�

To summarize� given a non�closed expression e� control��ow analysis using separate
abstract interpretation is performed according to the following steps�



�� CHAPTER 	� SEPARATE ABSTRACT INTERPRETATION

	� Apply type and e�ect inference to get the type environment E of e�

�� Use the function A onto E to approximate the corresponding initial abstract value
environment ����� �E���

�� Transform e to its CPS form e��

�� Apply the classical abstract interpretation algorithm to e�� based on ����� �E��� to
get the control��ow information�

�� Related Work

In Shivers�s thesis �Shivers
	�� control��ow analyses of arbitrary order �nCFA� where
n is the order� on programs written in continuation�passing style �CPS� �Appel�
� are
de�ned and performed by using an abstract interpretation approach� These control�
�ow analyses are able to distinguish di�erent call environments but fail to support
separate compilation� thus limiting their real�world application�

E�ect systems extend type systems with e�ect information� Just as types describe
the possible values of expressions� e�ects describe their possible evaluation behaviors�
Our previous papers �Tang
�� Tang
�� presented a type and control��ow e�ect system
where the inferred control��ow e�ects of expressions describe all control��ow traces
possibly occurring during their evaluation� This analysis supports separate compilation
but collapses call environments together� thus is less precise�
Here� we extend the abstract interpretation approach for 	CFA to support mod�

ularity� i�e� separate compilation� by approximating unknown value environments of
expressions via their type environments� Thus our control��ow analysis performs 	CFA�
and possibly nCFA� even in the presence of separate compilation�

�� Conclusion

This chapter introduced a new technique to extend abstract interpretation approach in
the context of separate compilation based on type and e�ect information� This separate
abstract interpretation makes the control��ow analysis as e�ective as the abstract in�
terpretation approach on closed expressions� but is also able to tackle expressions with
free variables� using their type to approximate their abstract value� We proved that the
control��ow information obtained by this new analysis is a conservative approximation
of abstract interpretation and is more precise than the type and e�ect system�



Chapter �

Higher�Order Escape Analysis

Control��ow analysis is helpful to choose an
e�cient closure allocation strategy	

��� Introduction

Escape analysis helps compilers optimize closure allocation in functional program im�
plementation� It determines� at compile time� the free variables of functions that outlive
the environment in which they are de�ned� Therefore non�escaping variables can be
safely allocated in the stack while reserving the heap only for escaping ones� We present
a new static escape analysis based on the control��ow e�ect systems �Chapter � �� ���
The escape analysis can be performed in presence of higher�order functions� imperative
constructs and separate compilation� We design a stack�based abstract machine where
closures are allocated in the stack and whenever functions are called� their escaping
free variables are copied from the stack to the heap�
In the sequel� we present a static criteria for identifying escaping functions �Section

����� design a stack�based abstract machine to show an optimized allocation strategy
�Section ���� and discuss related work �Section ���� before concluding �Section �����

��� Identifying Escaping Variables

���� Escaping Variables

Function values are represented by compilers as closures� Closures are composed of
the function code and the free variables that form its environment� Since functions
are �rst�class values� their free variables may outlive the environment in which they
are de�ned� Here we use integers to specify the lexical level of each expression� The
top�level expression has the lexical level �� The escaping variables do not obey the
LIFO stack�allocation strategy used in traditional call mechanism and must be heap�
allocated� Heap allocation is more general than stack allocation in the sense that heap
allocation can be used for all free variables of functions� while stack allocation is only
safe for non�escaping ones� However� stack allocation is cheaper than heap allocation

��



�� CHAPTER 
� HIGHER�ORDER ESCAPE ANALYSIS

because useless storage is simply reclaimed by updating a pointer instead of calling the
garbage collector� Finding an e�cient allocation strategy for closure environments is
therefore important for optimizing compilers of functional languages� A good strategy
of closure allocation for functional languages is to stack allocate non�escaping variables
of functions while reserving the more expensive heap allocation to escaping ones� The
key problem is thus to identify escaping variables at compile time safely and as precisely
as possible�

���� From Types to Escaping variables

Escaping variables can be identi�ed based on the types and control��ow e�ects inferred
by the previously de�ned control��ow e�ect systems �see Chapter ������� For any type�
checked function call �e e�� at the lexical level l� e must have a function type t�

c
� t

where t� is the type of the argument e� and t is the result type of this function call�
If a function n is returned as the result of this function call� it must be recorded by t

via its latent control��ow e�ects� If e� is evaluated to a memory location loc� t� must
be ref �t���� When a function n is allocated in loc during the evaluation of e� it must
be recorded by t�� via its latent control��ow e�ects� Note that the function type t�

c
� t

includes the information that helps identify the escaping variables of functions� More
precisely� for each function� we identify its escape�level and escape�set� The escape�level
is the smallest lexical level at which the function escapes �or in
nity if the function
does not escape� while its escape�set is the set of free variables of the function body
that are bound within its escape�level and de�nition site� The variables recorded by
the escape�set are escaping variables�
To compute this information� we use two environments� LE and EE� The lexical

environment LE maps identi�ers to the integer lexical levels at which they are bound�
The escape�environment EE maps a lexical level l de�ning a lambda expression to
the function type t

c
� t�� this type records� via the latent control��ow e�ects possibly

present in t or t�� the names of all of the functions that may escape at the level l� A
function n� de�ned at the level l�� escapes at the level l by being either part of the
value returned at the level l �its name is free in t�� or stored in a location bound at the
level l �its name is free in t�� the function n is then said to escape from l� to l�

���� Algorithm I

Given a lexical environment LE and an escape�environment EE� the algorithm I up�
dates� for an expression e at the level l� the identi�cation function i� This identi
cation
function maps a function name to its escape�set� A function may escape to multiple
lexical levels� conservatively� the escape�level is the minimum of them� The escape
set records all of the free variables of a function bound at a lexical level larger than
the escape�level� These two escape attributes are conservative approximations of their
dynamic counterparts�

We assume in I that the expression is completely typed� the type and control��ow
information having been previously inferred by the e�ect systems�




��� A STACK�BASED ABSTRACT MACHINE ��

I�e� LE EE l i �
case e

x � i

�e e�� � I�e� LE EE l �I�e�� LE EE l i�
��n �x � t� e� � t�� �

let el � Minfl j n � fn�EE�l��g
es � fy � fv�e� j LE�y� � elg
i� � I�e�� �LEfx �� lg�

�EEfl �� t
�
� t�g�

�l 	� i
in i�fn �� esg

where fv computes the set of free variables of expressions and environments� while fn
restricts this set to function names� By convention� Min� is de�ned to be in
nity� The
identi�cation function of a whole program expression p is given by calling I on p with
the empty environment� lexical level � and the identity function�
The previously computed escaping variables can be used to e�ciently allocate clo�

sure environments� For any function� only its escaping variables need to be allocated in
the heap� the others can� as before� be allocated in the stack� We introduce an abstract
machine to show how to use this optimized closure allocation strategy�

��	 A Stack�based Abstract Machine

���� Stack Calling Convention

The abstract machine is built upon the stack calling convention� Following compilers
of traditional languages �Aho���� an activation record is built for each function call�
which records the arguments of the function call� together with other information�
such as return point� etc� The activation records are allocated in a control stack�
obeying the LIFO strategy� The only di�erence is that when functions are called� their
escaping variables� which do not obey the LIFO stack�allocation strategy� have to be
copied from the control stack �the activation records�� to the heap� while all other non�
escaping free variables remain in the control stack� These heap allocated environments
are called escaping environments� Therefore closures in our compiler include two kinds
of environments � non�escaping environments recorded in the activation records in the
control stack� and escaping environments in the heap� When compiling non�escaping
functions� our compiler is as e�cient as compiling traditional languages� When escaping
functions exist� it is more e�cient than compiling other functional languages such as
SML or SCHEME �Krantz��� Steele��� Appel��� where the static escape information is
unknown or less precise� We present the structure of the abstract machine� describe
the semantics of its instructions� and give an algorithm C to transform the programs
to a list of instructions�

���� Structure

The state of the abstract machine is speci�ed by the following �ve elements �



�� CHAPTER 
� HIGHER�ORDER ESCAPE ANALYSIS

�Code�Accu�TempS�EsEnv�ContS�

which respectively are �

� User program �Code� � it includes a list of instructions of the abstract machine�
which are de�ned in Section ������

� Accumulator �Accu� � it stores the immediate result values of the abstract ma�
chine� The values can be integers or closures� The closure is composed of the
code of the function body� its escaping environment recorded by EsEnv and non�
escaping environment recorded in the activation records ActR�

� Temporary stack �TempS� � it temporarily stores the environments of functions�
It is organized as a list of values�

� Escaping environment �EsEnv� � it records the escaping free variables of a func�
tion� which is represented as a vector� Accessing escaping variables is by their
indices in the vector� All escaping environments are allocated in the heap�

� Control stack �ContS� � it stores the activation records of function calls linked
together by the access link� They obey the LIFO allocated strategy� An acti�
vation record is composed of the argument of the function call� the access link
pointing to another activation record� the return point where control will return
at the end of the function call� The return point includes the code and its escap�
ing environment� The environments of functions are recorded in the activation
records� Accessing them is by their indices in the linked activation records�

���� Instructions

The abstract machine has a set of instructions�

� stack�i� � accesses the value of a variable in the linked activation records allocated
in the control stack ContS via the function access�s� i� where i is its index in the
linked activation records� The function access�s� i� accesses the value recorded
in the ith activation record starting from s�

access��� i� � fail
access�s���v� s� r�� 	� � v
access�s���v� s� r�� i� � access�s� i� 	�

� heap�i� � accesses the value of an escaping variable in the escaping environment
EsEnv allocated in the heap� where i is its index of in the vector�

� push� pushes the current value on the temporary stack TempS�

� close�m�c� � closes a function with the code c of its body� its escaping envi�
ronment including m elements �poped from the temporary stack TempS� and its
current activation record �including non�escaping variables��




��� A STACK�BASED ABSTRACT MACHINE �


� call� updates the control stack ContS by building a new activation record for
the function call� This activation record is formed by the argument of the called
function �poped from the temporary stack TempS�� the access link �copied from
the non�escaping environment in the closure�� and the return point �including
the rest of code and the current escaping environment�� The current escaping
environment is updated with the one recorded in the closure and then control is
transferred to the code of the function body�

� return� updates the control stack ContS by poping the activation record� updates
the current escaping environment EsEnvwith the one recorded by the return point
of the poped activation record and transfers control to the code recorded by the
return point�

The semantics of the abstract machine is operationally given by the state transition
�Plotkin�	� of each instruction�

Code Accu TempS EsEnv ContS

stack�i� � c v a e s
c access�s� i� a e s

heap�i� � c v a e � v���vi��vn s

c vi a e s

push � c v a e s

c v a�v e s

close�m� c�� � c v a�v� � � � vm e s

c �c�� fv� � � � vmg� s� a e s

call � c v � �c�� e�� s�� a�v� e s
c� v a e� s��v�� s�� �c� e��

return � c v a e s��v�� s�� �c�� e���
c� v a e� s

���� Translator C

The translator C transforms an expression to a list of instructions of the abstract
machine based on the result of previous escaping analysis�

A stack environment Es maps identi�ers to their indices in the control stack ContS�
A heap environment Eh maps escaping variables to their indices in the escaping envi�
ronment EsEnv� The identi�cation function imaps all function names in the expression
e to their escaping variables� Given an identi�cation function i� a stack environment
Es and a heap environment Eh� the translator C transforms the expression e at the
lexical level l into a list of instructions of the abstract machine�

For a variable� if it is an escaping variable then its value is accessed by its index in
the escaping environment� otherwise it is accessed in the control stack�



�� CHAPTER 
� HIGHER�ORDER ESCAPE ANALYSIS

C��x�� i Es Eh l �
if x � Dom�Eh�
then heap�Eh�x��

else stack�l�Es�x��

For an application� the expression in the argument position is compiled and its
result is temporarily pushed onto the temporary stack TempS� Then the expression in
the function position is compiled� by building its closure� Finally the function is called
by constructing its activation record in the control stack ContS�

C���e e���� i Es Eh l �
C��e��� i Es Eh l � push � C��e�� i Es Eh l � call

For an abstraction� all its escaping variables �recorded by the identi�cation function
i� should be copied from the control stack and temporarily stored in the temporary
stack TempS� The function is closed with the code of its body� the escaping variables
moved from TempS and the current control stack pointer�

C����n �x� e��� i Es Eh l �
let fx����xmg � i�n�

fi� � � � img � fEs�x�����Es�xm�g
in stack�l� i�� � push �

���
stack�l� im� � push �

close�m� C��e�� i �Es�x �� l�� ����x� �� 	�����xm �� m�� �l 	� � return�

���	 Example

We use the example exam to show how our abstract machine hehaves�

exam � ��nz �z� ���nx �x� ��ny �y� x�� z��

After applying previous escape analysis to the program� we get its identi�cation
function i which maps the lambda expressions nz � ny and nx to their escaping variables�
�� � and fxg respectively� The translator C starts from the empty initial environments
Es and Eh and the initial lexical level ��

Since the lambda expression nz has no escaping variables� it is closed with the code
of its body and the pointer of the current control stack�

C����nz �z� ���nx �x� ��ny �y� x�� z���� i �� �� � �
close��� C�����nx �x� ��ny �y� x�� z��� i �z �� �� �� 	 � return�

For the function application ���nx �x� ��ny �y� x�� z�� the variable z has to be
accessed in the stack by stack�	�� Then the lambda expression nx is compiled�




��� RELATED WORK �	

C�����nx �x� ��ny �y� x�� z��� i �z �� �� �� 	 �
C��z�� i �z �� �� �� 	 � push �

C����nx �x� ��ny �y� x���� i �z �� �� �� 	 �
call �

where C��z�� i �z �� �� �� 	 � stack�	�

The code for nx is similar to that of nz �

C����nx �x� ��ny �y� x���� i �z �� �� �� 	 �
close��� C����ny �y� x��� i �z �� �� x �� 	� �� � � return�

Sicnce the lambda expression ny has the escaping variable x� x has to be copied from
the control��ow stack ContS to the temporary stackTempS by performing stack�	� � push�
Then ny is closed by the code of its body� the pointer of the current control stack and
its escaping environment �popped from the temporary stack TempS��

C����ny �y� x��� i �z �� �� x �� 	� �� � �
stack�	� � push �

close�	� C��x�� i �z �� �� x �� 	� y �� �� �x �� 	� � � return�
where C��x�� i �z �� �� x �� 	� y �� �� �x �� 	� � � heap�	�

The abstract machine code of the program exam is thus as below �

close��� stack�	� � push �

close��� stack�	� � push � close�	� heap�	� � return� � return� �

call �
return�

��� Related Work

Escape information can be identi�ed either at compile time� based on a static analysis
of programs� or at run time� using a run�time checking mechanism �Baker
��� Here we
only discuss compile�time approaches�

A simple escape analysis was used in the Scheme �Rees��� compilers Rabbit �Steele���
and ORBIT �Krantz��� to optimize closure allocation� These analyses are syntax�based�
i�e�� the escaping functions are identi�ed by their syntactical context through a recur�
sive walk of expressions� Our analysis is based on the type and control��ow information
of expressions� computed by a type and e�ect inference system� thus is more precise�
in particular when dealing with higher�order functions�

A higher�order escape analysis �Goldberg
�� on a typed functional language was per�
formed using abstract interpretation� This analysis computes abstract escape functions
of the programs based on �xpoint approximations� Our analysis applies an identifying
algorithm to the programs based on their types and control��ow information� which
makes our analysis process a lower cost� Another bene�t of using e�ect systems is
that it can straightforwardly deal with imperative constructs in functional languages
thanks to explicit reference types of locations� Another main di�erence between these



�� CHAPTER 
� HIGHER�ORDER ESCAPE ANALYSIS

two analyses is the de�nition of escape information� which decides the way that they
are used for optimizing closure allocation� Goldberg�s analysis identi�es� for each func�
tion call� which arguments possibly outlive this function call� The escaping arguments
are allocated immediately in the heap whenever the function call is performed� Our
analysis identi�es� for each function� the free variables that possibly outlive the envi�
ronment where they are de�ned� The escaping free variables have to be copied to the
heap whenever these functions are called at run time� which makes our system more
expansive at run�time application�

Taking the example used in Goldberg�s paper� we can see the di�erences between
these two analyses�

let f x y z � x  y  z
g a b � f b a

in g 	 �

In Goldberg�s analysis� abstract escape functions for the function f and g are formed
by �xed point iteration� With these abstract escape functions� the system identi�es
if their arguments escape from the calls to them� Here since 	 and � escape from the
function call �g 	 ��� they have to be allocated in the heap when compiling the function
call�

In our analysis� the identifying algorithm identi�es that x� y are escaping variables

of the function �nz �z� �x  y  z� from the result type int
fnzg
� int of �g 	 ���

Whenever the function nz is called at run time� their values have to be copied from the
stack to the heap�

Finally we compare the accuracy of these two analysis� Generally� the abstract
interpretation approach performs more precise analysis than e�ect systems due to its
more operational nature� However� since our escape information is used together with
run�time evaluation� only the escaping variables of functions that are reached at run
time need to be allocated in the heap� which makes our analysis more precise in some
cases� for example� in conditional expressions�

��� Conclusion

We presented a new higher�order escape analysis based on type and e�ect systems� sup�
porting higher�order functions� imperative constructs and separate compilation� The
escape analysis determines� at compile time� the free variables of functions that outlive
the environment in which they are de�ned� Based on these compile�time knowledge of
escape information� we designed a stack�based abstract machine� where non�escaping
variables are safely allocated in the stack and only escaping variables are allocated in
the heap�



Conclusion

My thesis work lies on the border of the

theory and the practice	

We extend and combine two static analysis approaches $ e�ect systems and abstract
interpretation� and study their application in performing control��ow analysis�

We present new control��ow analysis systems based on e�ect systems� Subtyping is
introduced to increase the �exibility of e�ect systems� The subtype relation is de�ned
by a subsumption relation on e�ect information� A new type and e�ect reconstruction
algorithm is designed� which for each expression already typed with classical types�
reconstructs its type and e�ect based on subtyping� The subtyping approach allows
functions to have di�erent types in di�erent call contexts instead of having a unique
type� thus improving the accuracy of e�ect systems based on sube�ecting� The current
subtyping e�ect system is built upon a monotonic type system� However it can be
extended to ML polymorphic type systems� which makes subtyping e�ect systems more
powerful� Another open issue is how to use the subtyping e�ect system in the presence
of side�e�ects�

We introduce the new notion of separate abstract interpretation which combines
e�ect systems and abstract interpretation in a single framework� By approximating
abstract values of free variables based on type and e�ect of module signatures� e�ect
systems provide a method to extend abstract interpretation in the context of separate
compilation� This separate abstract interpretation makes the control��ow analysis as
e�ective as the abstract interpretation approach on closed expressions� but is also able
to tackle expressions with free variables� using their type to approximate their abstract
value�

The goal of control��ow analysis is to implement functional languages more e��
ciently� The static knowledge of control��ow information plays an important role in
optimizing compilers of functional languages� such as interprocedural data��ow opti�
mizations and closure optimizations� There remain a lot of open issues in pragmatic
use of this control��ow information� We present an application of control��ow informa�
tion in optimizing closure allocation� This optimization is based on escape analysis� a
direct application of types and control��ow information� The escape analysis identi�es
the free variables that outlive the lexical scope of function de�nitions� This compile
time knowledge of escaping variables helps compilers choose a more e�cient allocation
strategy for closures� i�e� non�escaping variables can be safely stored in the stack� while
heap allocation is only used for escaping ones�

��



�� CHAPTER 
� HIGHER�ORDER ESCAPE ANALYSIS



Bibliography

�Aho��� Aho� A� V�� Sethi� R� and Ullman� J� D� Compilers� Principles� Techniques�
and Tools� Addison�Wesley� 	
���

�Aiken
�� Aiken A� Type Inclusion Constraints and Type Inference� In Conference on

Functional Programming Languages and Computer Architecture� August� 	

��

�Appel��� Appel� A� W� and MacQueen� D� B� A Standard ML compiler� In Functional
Programming Languages and Computer Architecture� volume ��� of Lecture Notes
in Computer Science� Springer�Verlag� 	
���

�Appel�
� Appel� A� W� and Jim� T�Y� Continuation�Passing� Closure�Passing Style�
In ACM Symposium on Principles of Programming Languages� pages �
������ 	
�
�

�Appel
�� Appel� A� W� and Mac Queen� D� B� Standard ML Reference Manual� AT%T
Bell Laboratories and Princeton University� October 	

��

�Appel
�� Appel� A� W� Compiling with Continuations� Cambridge University Press�
	

��

�Baker
�� Baker� H�G� CONS Should not CONS its Arguments� or� a Lazy Alloc is
Smart Alloc� In ACM SIGPLAN Notices Volume ��� No��� 	

��

�Benjamin
�� Benjamin� P� Intersection Types and Bounded Polymorphism� In LFCS
Report Series� University of Edinburgh� 	

��

�Bondorf
�� Bondorf� A� and Jorgensen� J� E�cient Analyses for Realistic O��line Par�
tial Evaluation� In Journal of Functional Programming� Vol �� Part �� Cambridge
University Press� July 	

��

�Cardelli��� Cardelli� L� Compiling a Functional Language� In ACM Symposium of

LAFP� 	
���

�Cardelli��� Cardelli� L� On Understanding Types� Data�Abstractions� and Polymor�
phism� In Computing Surveys� 	�����	
���

�Cardelli��� Cardelli� L� Structural Subtyping and the Notion of Power Type� In ACM
Symposium on Principles of Programming Languages� pages ����
� 	
���

�Consel
�� Consel� C� and Jouvelot� P� Separate Polyvariant Binding�Time Analysis�
In Technical Report� CRI� Ecole des Mines de Paris� 	

��

��



�� BIBLIOGRAPHY

�Cousot��� Cousot� P� and Cousot� R� Abstract Interpretation� a uni�ed lattice model
for static analysis of programs by construction of approximation of �xpoints� In
ACM Symposium on Principles of Programming Languages� 	
���

�Cousot�
� Cousot� P� and Cousot� R� Systematic Design of Program Analysis Frame�
works� In ACM Symposium on Principles of Programming Languages� 	
�
�

�Damas��� Damas� L� and Milner� R� Principal type�schemes for functional programs�
In ACM Symposium on Principles of Programming Languages� pages �����	�� 	
���

�Deutsch
�� Deutsch A� On Determining Lifetime and Aliasing of Dynamically Al�
located Data in Higher�Order Functional Speci�cations� In ACM Symposium on
Principles of Programming Languages� 	���	���	

��

�Dornic
	� Dornic� V� and Jouvelot� P� Polymorphic Time Systems for Estimating Pro�
gram Complexity� In LOPLAS���� Bordeaux� France� 	

	�

�Fuh��� Fuh� Y� and Mishra� P� Type Inference with Subtypes� In European Symposium

on Programming� pages 
��		�� 	
���

�Gi�ord��� Gi�ord� D� K�� Jouvelot� P�� Lucassen� J� M� and Sheldon� M� A� FX�
�� Reference Manual� MIT�LCS�TR����� MIT Laboratory for Computer Science�
September 	
���

�Goldberg
�� Goldberg� B� and Park� Y� G� Higher Order Escape Analysis� Optimizing
Stack Allocation in Functional Program Implementation� In European Symposium
on Programming� volume ��� of the Lectures Notes in Computer Science� pages
	���	��� Springer�Verlag� 	

��

�Grundman
�� Grundman�� D� Stata� R� and Toole� J�O� Mini�DXDLX $ A Pedagogic
Compiler� M�I�T� 	

��

�Hammel��� Hammel� R� T� and Gi�ord� D� K� FX��� Performance Measurements�
Data�ow Implementation� MIT�LCS�TR����� MIT Laboratory for Computer Sci�
ence� November 	
���

�Jouvelot��� Jouvelot� P� and Gi�ord� D� K� The FX��� Interpreter In International

Conference on Computer Languages� 	
���

�Jouvelot�
� Jouvelot� P� and Gi�ord� D� K� Reasoning about Continuations with Con�
trol E�ects� In International Conference on Progamming Language Design and Im�
plementation� ACM� New�York� 	
�
�

�Jouvelot
	� Jouvelot� P� and Gi�ord� D� K� Algebraic Reconstruction of Types and
E�ects� In ACM Symposium on Principles of Programming Languages� 	

	�

�Kanellakis�
� Kanellakis� P� and Mitchell� J� C� Polymorphic Uni�cation and ML Typ�
ing� In ACM Symposium on Principles of Programming Languages� 	
�
�

�Kelsey�
� Kelsey� R�A� Compilation by Program Transformation� Ph	D	 Thesis� Yale
University� May 	
�
�



BIBLIOGRAPHY ��

�Krantz��� Krantz� D� ORBIT� An Optimizing Compiler for Scheme� Ph	D	 Thesis�
Yale University� Feb� 	
���

�Leeuwen
�� J� Van Leeuwen� Formal Models and Semantics� In Handbook of Theoret�

ical Computer Science� volume B� The MIT press� 	

��

�Leroy
��	� Leroy� X� The ZINC Experiment� an Economical Implementation of the
ML Language� Technical report 		�� INRIA� 	

��

�Leroy
���� Leroy� X� Unboxed Objects and Polymorphic Typing In ACM Symposium
on Principles of Programming Languages� 	

��

�Leroy
	� Leroy� X� and Weis� P� Polymorphic Type Inference and Assignment� In ACM
Symposium on Principles of Programming Languages� 	

	�

�Lucassen��� Lucassen� J� M� Types and E�ects� Towards the Integration of Functional
and Imperative Programming�MIT�LCS�TR���� �Ph� D� Thesis�� MIT Laboratory
for Computer Science� August 	
���

�Lucassen��� Lucassen� J� M� and Gi�ord� D� K� Polymorphic E�ect Systems� In ACM
Conference on Principles of Programming Languages� ACM� New�York� 	
���

�MacCracken�
� MacCracken� N� Investigation of a Programming Language with a
Polymorphic Type Structure� Ph	 D	 Thesis� Syracuse University� 	
�
�

�MacQueen
�� MacQueen� D� B� Modules for Standard ML� In ACM Conference on
Lisp and Functional Programming� pages 	
������ ACM Press� New�York� 	

��

�Milner��� Milner� R� A Theory for Type Polymorphism in Programming� In Journal
of Computer and Systems Sciences� Vol� 	�� pages �������� 	
���

�Milner
�� Milner� R�� Tofte� M� and Harper� R� The De�nition of Standard ML� The
MIT Press� Cambridge� 	

��

�MIT
�� Mini�FX Reference Manual� MIT� 	

��

�Mitchell��� Mitchell� J� C� and Harper� R� The Essence of ML� In ACM Symposium

on Principles of Programming Languages� 	
���

�Mycroft�	� Mycroft� A� Abstract Interpretation and Optimizing Transformations for
Applicative Programs� PhD Thesis� University of Edinburgh� 	
�	�

�O�Toole
�� O�Toole� J� W� Type Abstraction Rules for References� a Comparison of
Four which Have Achieved Notoriety� Technical Report ���� MIT Laboratory for
Computer Science� 	

��

�Plotkin�	� Plotkin� G� A Structural Approach to Operational Semantics� Technical
Report DAIMI�FN���� Aarhus University� 	
�	�

�Stansifer��� Stanifer� R� Type Inference with Subtypes� In ACM Symposium on Prin�
ciples of Programming Languages� 	
���



�� BIBLIOGRAPHY

�Robinson��� Robinson� J� A� A Machine Oriented Logic Based on the Resolution Prin�
ciple� In Journal of the ACM� Vol� 	��	�� pages ����	� ACM� New�York� 	
���

�Rees��� Rees� J� and Clinger W�� Editors� Fourth Report on the Algorithmic Language
Scheme� September 	
���

�Siekmann�
� Siekmann� J� H� Uni�cation Theory� In Journal of Symbolic Computa�
tions� volume �� pages �������� Academic Press� 	
�
�

�Sheldon
�� Sheldon� A� M� and Gi�ord� D� K� Static Dependent Types for First Class
Modules� In ACM Conference on Lisp and Functional Programming� 	

��

�Shivers
	� Shivers� O� Control�Flow Analysis of Higher�Order Languages� Ph	 D	 The�
sis and Technical Report CMU�CS�������� Carnegie Mellon University� Pittsburgh�
May 	

	�

�Steele��� Steele� G� Rabbit� A Compiler for Scheme� In MIT�AI Technical Report No	

���� MIT Laboratory for Computer Science� May 	
���

�Steele
�� Steele� G� L� Common Lisp� the language� Digital Press 	

��

�Stoy��� Stoy� J� E�Denotational Semantics The Scott�Strachey Approach to Program�

ming Language Theory� The MIT Press� 	
���

�Talpin
��	� Talpin� J� P� and Jouvelot� P� Polymorphic Type� Region and E�ect Infer�
ence� In the Journal of Functional Programming� volume �� number �� Cambridge
University Press� 	

��

�Talpin
���� Talpin� J� P� and Jouvelot� P� The Type and E�ect Discipline� In IEEE

Conference on Logic in Computer Science� Santa Cruz� California� June 	

��

�Talpin
��	� Talpin� J� P� and Jouvelot� P� Compiling FX on the Connection Machine�
In Workshop on Static Analysis� Sept 	

��

�Talpin
���� Talpin� J� P� Type Discipline� PhD Thesis� May 	

�

�Tang
�� Tang� Y� M� and Jouvelot� P� Control�Flow E�ects for Closure Analysis� In
proceedings of the �nd Workshop on Semantics Analysis� Bigre numbers �	���� pages
�	����	� Bordeaux� Octobre 	

��

�Tang
�� Tang� Y� M� and Jouvelot� P� E�ect Systems with Subtyping� In Technical

Report� CRI� Ecole des Mines de Paris 	

��

�Tang
�� Tang� Y� M� and Jouvelot� P� Separate Abstract Interpretation for Control�
Flow Analysis� International Symposium on Theoretical Aspects of Computer Soft�

ware� Japan� Avril 	

��

�Tofte��� Tofte� M� Operational Semantics and Polymorphic Type Inference� PhD The�
sis and Technical Report ECS�LFCS������� University of Edinburgh� 	
���

�Tofte
�� Tofte� M� Type Inference for Polymorphic References� In Information and
Computation� �
�	�� pages 	���� 	

��



BIBLIOGRAPHY �


�Wand��� Wand� M� A simple algorithm and proof for type inference� In Fundamenta

Informaticae� volume 	�� pages 		��	��� North Holland� 	
���

�Wand
�� Wand� M� and Steckler� P� Selective and Lightweight Closure Conversion In
Technical Report 	

�



�� BIBLIOGRAPHY



Appendix �

Proof of Lemma ���

Lemma ��	 �Monotony of F � If Q and Q� are two subsets of the domain R�

Q  Q� � F�Q�  F�Q��

Proof

Taking any q � �v� t�� s	t	 q � F�Q�

Since q � F�Q�� by the de�nition of F
�	� q � Q

Since Q  Q�

��� q � Q�

Now we prove that q � F�Q��

� Case v � i

Since q � F�Q�� by the de�nition of F
��� q � �i� int�

From ������� by the de�nition of F
��� q � F�Q��

� Case v � �n� x� e� E�

Since q � F�Q�� by the de�nition of F � �E s	t	

��� �x � Dom�E�� x � Dom�E�
��� �E�x�� E�x�� � Q
��� E � ��n �x� e� � t

From ���� since Q  Q�

��� �E�x�� E�x�� � Q�

From ������������� by the de�nition of F
�
� q � F�Q��

�	



�� BIBLIOGRAPHY

From ����
�
�	�� �q � F�Q�� q � F�Q��

From �	��
F�Q�  F�Q�� �

Proof of Theorem ���

Theorem ��	 �Consistency of Static Semantics�

E � e� v� b
E � e � t� c
E � E

����� �

�
v � t
b  c

Proof By induction on the number of reduction steps of expressions�

� Case of �var�

The hypotheses are
�	� E � E
��� E � x� E�x�� �
��� E � x � E�x�� �

From ���� by �var� in the dynamic semantics
��� x � Dom�E�

From ���� by �var� in the static semantics
��� x � Dom�E�

From �	�������� by De�nition ��	
E�x� � E�x�

� Case of �abs�

The hypotheses are
�	� E � E
��� E � ��n �x� e�� �n� x� e� Ex�� �

��� E � ��n �x� e� � t
� fng�c� t� �

From �	�� by De�nition ��	
��� Ex � E

From ������� by De�nition ��	

�n� x� e� Ex� � t
� fng�c� t



BIBLIOGRAPHY ��

� Case of �rec�

The hypotheses are
�	� E � E
��� E � �recn �f x� e�� cl� �
��� E � �recn �f x� e� � t� �

From ���� by �rec� in the dynamic semantics
��� cl � �n� x� e� E��
where E� � E�f �� cl�

From ���� by �rec� in the static semantics
��� E � � ��n �x� e� � t� �
where E � � E �f �� t�

By De�nition ���� for proving cl � t
we have to prove � �cl� t� � gfp�F�

We de�ne Q � gfp�F� � f�cl� t�g

By the de�nition of gfp�F�� for proving �cl� t� � gfp�F�
we have to prove � Q  F�Q�

Taking any q� s	t	 q � Q

� Case q � gfp�F�

Since gfp�F�  Q and F is monotonic
��� F�gfp�F��  F�Q�

By the de�nition of gfp�F�
��� gfp�F�  F�gfp�F��

From ������
��� gfp�F�  F�Q�
thus q � F�Q�

� Case q � �cl� t�

From �	�� by De�nition ���
�x � Dom�E�� x � Dom�E�
�
� �E�x�� E�x�� � gfp�F�

From �
�� since gfp�F�  Q
�	�� �E�x�� E�x�� � Q



�� BIBLIOGRAPHY

From �	��� since �cl� t� � Q
�x � Dom�E�� x � Dom�E�
�		� �E��x�� E��x�� � Q

From �		����� since �cl� t� � Q� by the de�nition of F
�	�� �cl� t� � F�Q�
thus q � F�Q�

From ����	��
Q  F�Q�

By the de�nition of gfp�F�� since �cl� t� � Q
�cl� t� � gfp�F�

By De�nition ���
cl � t

� Case of �app�

The hypotheses are
�	� E � E
��� E � �e e��� v� b� b� � b�� � fng
��� E � �e e�� � t� c � c� � c��

From ���� by �app� in the dynamic semantics
��� E � e� �n� x� e��� E��� b
��� E � e� � v�� b�

��� E��x �� v�� � e�� � v� b��

From ���� by �app� in the static semantics

��� E � e � t�
c��

� t� c

��� E � e� � t�� c�

From �	������� and �	�������� by inductions

�
� �n� x� e��� E�� � t�
c��
� t

�	�� b  c

�		� v� � t�

�	�� b�  c�

From �
�� by De�nition ��	
�	�� �E �� verifying E� � E �



BIBLIOGRAPHY ��

�	�� E � � ��n �x� e��� � t�
c��
� t

From �	��� by �abs� in the static semantics
�	�� E ��x �� t�� � e�� � t� c���

�	�� c�� � c��� � fng

From �	���		�
�	�� E��x �� v�� � E ��x �� t��

From �	������	��� by induction
v � t
�	�� b��  c���

From �	���	���	���	��
b � b� � b�� � fng  c � c� � c��



�� BIBLIOGRAPHY



Appendix �

Proof of Theorem ���

Theorem ��� �Soundness� Given an expression e and its type environment E � ifR�E � e� �
h�� t� c� �i� then� for any e�ect model 	 of �� one has�

	�E � e � 	t� 	c

Proof By induction on the number of reduction steps of expressions�

� Case of �var�

The hypotheses are
�	� R�E � x� � hId� E�x�� �� �i
��� 	 j� �

From �	�� by the de�nition of R
��� x � Dom�E�� i�e� x � Dom�	E�x��

From ���� by �var� in the static semantics
	E � x � 	E�x�� �

� Case of �abs�

The hypotheses are

�	� R�E � ��n �x� e�� � h�� ��
�
� t� �� � � f� � fng � cgi

��� 	 j� � � f� � fng � cg

From �	�� by the de�nition of R
��� R�E �x �� ��� e� � h�� t� c� �i

From ���� by the de�nition of e�ect models
��� 	 j� �
��� 	 j� f� � fng � cg� i�e� 	� � fng � 	c

From ������� by induction
��� 	��E �x �� ��� � e � 	t� 	c

��



�� BIBLIOGRAPHY

From ������� by �does� in the static semantics
��� 	�E �x �� 	���� � e � 	t� 	�

From ���� by �abs� in the static semantics

	�E � ��n �x� e� � 	���
�
� t�� �

� Case of �rec�

The hypotheses are

�	� R�E � �recn �f x� e�� � h���� ������
�
� ��� �� ���� � f�� � fng � cg�i

��� 	 j� ���� � f�� � fng � cg�

From �	�� by the de�nition of R

��� R�E �f �� ��
�
� ���x �� ���� e� � h�� t� c� �i

��� �� � U���� t�
where ��� �� � are fresh

From ���� by the de�nition of e�ect models
��� 	�� j� �
��� 	�� j� �� � fng � c� i�e� 	���� � fng � 	��c

From ������� by induction

��� 	����E �f �� ��
�
� ���x �� ���� � e � 	��t� 	��c

From ������� by �does� rule in the static semantics

��� 	����E �f �� ��
�
� ���x �� ���� � e � 	��t� 	����

From ���� by the correctness of uni�cation
�
� ���� � ��t i�e 	���� � 	��t

From ����
�

�	�� 	����E �f �� ��
�
� ���x �� ���� � e � 	����� 	����

From �	��� by �rec� in the static semantics

	���E � �recn �f x� e� � 	������
�
� ��� �

� Case of �app�

The hypotheses are
�	� R�E � �e e��� � h������� ����� ������c� c� � ��� ������� � ���i
��� 	 j� ������� � ���



BIBLIOGRAPHY �


From �	�� by the de�nition of R
��� R�E � e� � h�� t� c� �i
��� R��E � e�� � h��� t�� c�� ��i

��� ��� � U���t� t�
�
� ��

for fresh variables � and �

From ���� by the de�nition of e�ect models
��� 	����� j� �
��� 	��� j� ��

From ������ and ������� by inductions
��� 	������E � e � 	�����t� 	�����c
�
� 	������E � e� � 	���t�� 	���c�

From ���� by the correctness of uni�cation

�	�� �����t � ����t�
�
� ��� i�e� 	�����t � 	���t�

�����
� 	����

From ����
��	��� by �app� in the static semantics
	������E � �e e�� � 	����� 	������c � c� � �� �

Proof of Theorem ��	

Theorem ��� �Completeness� If ��E � e � t�� c�� then R�E � e� � h�� t� c� �i and there
exists an e�ect model 	 of � such that�

��E � 	�E and t� � 	t and c� � 	c

Proof By induction on the number of reduction steps of expressions�

� Case of �var�

The hypothesis is
��E � x � ��E�x�� �

By �var� in the static semantics
x � Dom�E�

By the de�nition of R
R�E� x� � hId� E�x�� �� �i

Taking 	 � ��� such that 	 j� �
��E � 	E
��E�x� � 	E�x�




� BIBLIOGRAPHY

� Case of �abs�

The hypothesis is

��E � ��n �x� e� � t��
fng�c�
� t�� �

By �abs� in the static semantics
�	� ��E �x �� t��� � e � t�� c�

Suppose � new� we de�ne a substitution ���� such that �

���� �

�
t�� � � �

��� otherwise

By the de�nition of ���� �	� is equivalent to
��� ����E �x �� ��� � e � t�� c�

From ���� by induction
��� R�E �x �� ��� e� � h�� t� c� �i
�	� 	 j� �� such that
��� ����E �x �� ��� � 	��E �x �� ���
��� t� � 	t
��� c� � 	c

From ���� by the de�nition of R

R�E� ��n �x� e�� � h�� ��
�
� t� �� �� f� � fng � cgi

where � is fresh

We de�ne a substitution 	� on fv��E � ��� t� c� �� and ��

	�� �

�
	��� � � fv��E � ��� t� c� ��
fng � c� � � �

By the de�nition of 	�

��� 	�� � fng � c�
��� 	��fng � c� � fng � 	c
�
� 	�� � 	�

From ���������� by the de�nition of e�ect models
�	�� 	� j� f� � fng � cg

From �
�� since 	 j� �

�		� 	� j� �



BIBLIOGRAPHY 
	

From �	���		�� by the de�nition of e�ect models
	� j� � � f� � fng � cg

From ���� by the de�nition of ��� and 	�

��E � 	�E � 	��E
�	�� t�� � 	�� � 	���

From ���� by the de�nition of 	�

�	�� t� � 	�t

From ����	���	��

t��
fng�c�
� t� � 	����

�
� t�

� Case of �rec�

The hypothesis is

��E � �recn �f x� e� � t��
fng�c�
� t�� �

By �rec� in the static semantics

�	� ��E �f �� t��
fng�c�
� t���x �� t��� � e � t�� c�

Suppose ��� �� � new� we de�ne a substitution ���� such that �

���� �

��������	
t�� � � ��

t� � � �
fng � c� � � �

��� otherwise

By the de�nition of ���� �	� is equivalent to

��� ����E �f �� ��
�
� ���x �� ���� � e � t�� c�

From ���� by induction

��� R�E �f �� ��
�
� ���x �� ���� e� � h�� t� c� �i

�	� 	 j� �� such that

��� ����E �f �� ��
�
� ���x �� ���� � 	��E �f �� ��

�
� ���x �� ����

��� t� � 	t
��� c� � 	c

From ���� By the de�nition of ���
��� ��E � 	�E

��� t��
fng�c�
� t� � 	����

�
� ��

�
� t� � 	��




� BIBLIOGRAPHY

�	�� fng � c� � 	��

From ����
�
�		� 	t � 	��

From �		�� by the correctness of uni�cation
�	�� ���� �� � U �t� ���
and �	�� such that�
�	�� 	 � 	���

From ����	��� by the de�nition of R

R�E� �recn �n� x� e�� � h���� ������
fng�c
� ��� �� ���� � f�� � fng � cg�i

From �	��� since 	 j� �
�	�� 	� j� ���

From ����	��
�	�� 	�� � fng � 	c

From �	���	��� by the de�nition of e�ect models
�	�� 	� j� f���� � fng � ��cg

From �	���	��� by the de�nition of the e�ect models
	� j� ���� � f�� � fng � cg�

From ����	��
��E � 	�E � 	����E

From ����	��

t��
fng�c�
� t� � 	�������

�
� ��

� Case of �app�

The hypothesis is
��E � �e e�� � t�� c� � c�� � c���

By �app� in the static semantics

�	� ��E � e � t��
c��
�� t�� c�

��� ��E � e� � t��� c
�
�

From �	�� by induction
��� R�E � e� � h�� t� c� �i



BIBLIOGRAPHY 
�

�	� 	 j� �� such that�
��� ��E � 	�E

��� t��
c��
�� t� � 	t

��� c� � 	c

From ���� ��� is equivalent with�
��� 	��E� � e� � t��� c

�
�

From ���� by induction
��� R��E � e�� � h��� t�� c�� ��i
�	�� 	� j� ��� such that�
�
� 	�E � 	����E
�	�� t�� � 	�t�

�		� c�� � 	�c�

Let �� � be fresh� We de�ne a substitution �� on fv��E � t� c� ��� fv����E � t�� c�� ����
� and �

��� �

��������	
	� � � fv��E � t� c� ��
	�� � � fv����E � t�� c�� ���
t� � � �
c��� � � �

Note that ��� if � � fv��E � t� c� �� and � � fv����E � t�� c�� ���
then by the de�nition of R� � � fv��E� and � � fv����E�� which means ��� � �

From �
�� we know 	� � 	��� thus �� is well de�ned�

From �	��� by the de�nition of ���

�	�� ���t�
�
� �� � 	�t�

c��
�� t� � t��

c��
�� t�

By the de�nition of R� �� � fv�t� c� ��
v is either in fv��E� or is a fresh variable introduced by R�E � e��

� case � � fv��E�

By the de�nition of ��
�	�� ������E� � 	�����E�

From �
��	��
�	�� ������E� � 	��E�� i� e ���

�� � 	�

� case � is fresh

Since � � fv�t� c� ��� by the de�nition of ��
�	�� ��� � 	�




� BIBLIOGRAPHY

From �	��� since ��� � �

�	�� ���
�� � ��� � 	�

From �	���	��
�	�� �� � fv�t� c� ��� ���

� � 	

From ����	��

�	�� t��
c��
�� t� � ���

�t

From �	���	��

�	
� ����
�t� � ���t

� �
� ��

From �	
�� by the correctness of uni�cation� ���� such that

���� ��� � U���t� t�
�
� �� and �	�� such that

��	� �� � 	�����

From ����������� by the de�nition of R
R�E� �e e��� � h������� ����� ������c � c� � ��� ������� � ���i

From �	��� since 	 j� �
���� ���� j� �

Since 	� j� ��� by the de�nition of ��
���� �� j� ��

From ��������� by the de�nition of e�ect models
���� �� j� ��� � ��

From ������	�� by the de�nition of e�ect models
	�� j� ������� � ���

From ����
���	�� by the de�nition of ��
���� ��E � 	�����E� � ������E� � 	��������E

From ��	�� since ��� � t�
t� � 	������

From ����	����	�
���� c� � 	c � ���

�c � 	�������c



BIBLIOGRAPHY 
�

From �		���	�� by the de�nition of ��
���� c�� � 	�c� � ��c

� � 	�����c�

From ��	�� by the de�nition of ��
���� c��� � ��� � 	������

From ������������
c� � c�� � c��� � 	��������c � c� � �� �




� BIBLIOGRAPHY



Appendix �

Proof of Lemma 	��

Lemma ��� �Formal E�ect Constraints� If S�E � e� � ht� c� �i� then � is of form�

f�i � ci j i � 	��sg

Proof By induction of the structure of expressions�

� Case of x

The hypothesis is
S�E � x� � ht� ��E� �t� � t�i

By the de�nition of S
�	� t� � E�x�
��� t � New�Erase�t���

From �	�� by Lemma ��	
��� t� includes only fresh e�ect variables

From ������� by the de�nition of E�
E� �t� � t� veri�es the lemma�

� Case of ��n �x� e�

The hypothesis is

S�E � ��n �x � �� e�� � ht�
�
� t� �� �� f� � fng � cgi

By the de�nition of S
�	� � new

��� ht� c� �i � S�E �x �� t��� e�

From ���� by induction
��� � veri�es the lemma

From �	����
� � f� � fng � cg veri�es the lemma


�




� BIBLIOGRAPHY

� Case of �recn �f x� e�

The hypothesis is

S�E � �recn �f � � � � � x � � �� e�� � ht�
�
� t� �� � � E� �t�� � t� � f� � fng � cgi

By the de�nition of S

�	� t�
�
� t � New�� � � ��

��� ht��� c� �i� S�E �f �� t�
�
� t��x �� t��� e�

From �	�� by the de�nition of New
��� t � New���
��� � new

From ���� by Lemma ��	
��� t�� includes only fresh e�ect variables

From ���� by induction
��� � veri�es the lemma

From ������� by the de�nition of E�
��� E� �t�� � t� veri�es the lemma

From ���������
� � E� �t�� � t� � f� � fng � cg veri�es the lemma

� Case of �e e��

The hypothesis is
S�E � �e e��� � ht� c� c� � �� � � �� � E� �t� � t���i

By the de�nition of S

�	� ht��
c��

� t� c� �i � S�E � e�
��� ht�� c�� ��i � S�E � e��

From �	����� by Lemma ��	

��� t��
c��

� t includes only fresh e�ect variables
��� t� includes only fresh e�ect variables

From ���
��� t�� includes only fresh e�ect variables

From �	����� by induction
��� � and �� verify the lemma



BIBLIOGRAPHY 



From ���������� by the de�nition of E�
� � �� � E� �t� � t��� veri�es the lemma �

Proof of Theorem 	��

Theorem ��	 �Soundness� Given an expression e and its type environment E � if S�E � e� �
ht� c� �i� then for any e�ect model 	 of �� one has �

	E � e � 	t� 	c

Proof By induction on the structure of expressions

� Case of �var�

The hypotheses are
�	� S�E � x� � ht� ��E� �t� � t�i
��� 	 j� ft� � tg

From �	�� by the de�nition of S
��� t� � E�x�� i�e� 	E�x� � 	t�

From ���� by �var� rule in the static semantics
��� 	E � x � 	t�� �

From ���� by Lemma ���
��� 	t� � 	t

From ������� by �sub� rule in the static semantics
	E � x � 	t� �

� Case of �abs�

The hypotheses are

�	� S�E � ��n �x � �� e�� � ht�
�
� t� �� �� f� � fng � cgi

��� 	 j� � � f� � fng � cg
where t� � New��� and � new

From �	�� by the de�nition of S
��� ht� c� �i � S�E �x �� t��� e�

From ���� by the de�nition of e�ect models
��� 	 j� �

��� 	 j� f� � fng � cg i�e� 	� � 	�fng � c�



	�� BIBLIOGRAPHY

From ������� by induction
��� 	�E �x �� t��� � e � 	t� 	c

From ���� by �abs� in the static semantics

��� 	E � ��n �x� e� � 	�t�
fng�c
� t�� �

From ���� by the de�nition of subtype relation

��� 	�t�
fng�c
� t� � 	�t�

�
� t�

From ������� by �sub� rule in the static semantics

	E � ��n �x� e� � 	�t�
�
� t�� �

� Case of �rec�

The hypotheses are

�	� S�E� �recn �f � �
� � � x � � �� e�� � ht�

�
� t� �� ��E� �t�� � t�� f� � fng � cgi

��� 	 j� � � E� �t�� � t� � f� � fng � cg

where t�
�
� t � New�� � � ��

From �	�� by the de�nition of S

��� ht��� c� �i� S�E �f �� t�
�
� t��x �� t���

From ���� by the de�nition of e�ect models
��� 	 j� �
��� 	 j� E� �t�� � t�
��� 	 j� f� � fng � cg� i�e� 	� � fng � 	c

From ������� by induction

��� 	�E �f �� t�
�
� t��x �� t��� � e � 	t��� 	c

From ���� by Lemma ���
��� 	t�� � 	t

From ������� by �sub� in the static semantics

�
� 	�E �f �� t�
�
� t��x �� t��� � e � 	t� 	c

From �
�� by �abs� in the static semantics

�	�� �	E��f �� 	�t�
�
� t�� � ��n �x� e� � 	�t�

fng�c
� t�� �

From ���� by the de�nition of subtype relation

�		� 	�t�
fng�c
� t� � 	�t�

�
� t�



BIBLIOGRAPHY 	�	

From �	���		�� by �sub� rule in the static semantics

�	�� �	E��f �� 	�t�
�
� t�� � ��n �x� e� � 	�t

� �
� t�� �

From �	��� by �rec� rule in the static semantics

	E � �rec n �f x� e� � 	�t�
�
� t�� �

� Case of �app�

The hypotheses are
�	� S�E � �e e��� � ht� c � c� � c��� � � �� � E� �t� � t���i
��� 	 j� � � �� � E� �t� � t���

From �	�� by the de�nition of S

��� S�E � e� � ht��
c��

� t� c� �i
��� S�E � e�� � ht�� c�� ��i

From ���� by the de�nition of e�ect models
��� 	 j� �
��� 	 j� ��

��� 	 j� E� �t� � t���

From ������ and ������� by induction

��� 	E � e � 	�t��
c��
� t�� 	c

�
� 	E � e� � 	t�� 	c�

From ���� by Lemma ���
�	�� 	t� � 	t��

From �
��	��� by the �sub� rule in the static semantics
�		� 	E � e� � 	t��� 	c�

From ����		�� by �app� in the static semantics
	E � �e e�� � 	t� 	�c � c� � c��� �

Proof of Theorem 	��

Theorem ��� �Completeness� If ��E � e � t�� c�� then S�E � e� � ht� c� �i and there exists
a e�ect model 	 of �� such that�

��E � 	E and 	t � t� and c� � 	c

Proof By induction on the structure of expressions



	�� BIBLIOGRAPHY

� Case of �var�

The hypothesis is
��E � x � t�� �

By �var� and �sub� rules in the static semantics
�	� t�� � E�x�
��� ��t

�
� � t�

From �	�� by the de�nition of S
S�E � x� � ht� ��E� �t�� � t�i
where t � New�Erase�t����

Since t includes only fresh e�ect variables� taking �� such that�
��� �t � t�

We de�ne the e�ect model 	� such that �

	� �

�
�� � � fv�t�
��� otherwise

Note that since t includes only fresh e�ect variables� 	 is well de�ned�

From ������� by the de�nition of 	
��� 	t�� � ��t

�
� � t�

��� 	t � �t � t�

From ������� by Lemma ���
	 j� E� �t�� � t�

By the de�nition of 	
��E � 	E

From ���
	t � t�

� Case of �abs�

The hypothesis is
��E � ��n �x� e� � t

�
�

c�� t�� �

By �abs� and �sub� rule in the static semantics

�	� ��E � ��n �x� e� � t��
fng�c�
� t�� �

��� t��
fng�c�
� t� � t��

c�� t�



BIBLIOGRAPHY 	��

From �	�� by �abs� rule in the static semantics
��� ���E��x �� t��� � e � t�� c�

If x is of the principal type � � let t� � New���
then there exists a substitution �� such that�
��� t�� � �t�

we de�ne a substitution ���� such that �

���� �

�
�� � � fv�t��
��� otherwise

Note that since t� includes only fresh e�ect variables� ��� is well de�ned�

From ���� by the de�nition of ���� ��� is equivalent with �
��� ����E �x �� t��� � e � t�� c�

From ���� by induction
��� S�E �x �� t��� e� � ht� c� �i
�	� such that �
��� 	 j� �
��� ����E �x �� t��� � 	�E �x �� t���
�
� 	t � t�
�	�� c� � 	c

From ������� by the de�nition of ���
�		� ��E � 	E
�	�� t�� � 	t�

From ���� since t� � New���� by the de�nition of S

�	�� S�E � �n �x � �� e� � ht�
�
� t� �� �� f� � fng � cgi

where � new

We de�ne a e�ect substitution 	� on fv�E � t�� t� c� �� and �� such that �

	�� �

�
	� fv�E � t�� t� c� ��
c� � � �

Note that since � is fresh� 	� is well de�ned�

From ���� by the de�nition of 	�

�	�� 	� j� �



	�� BIBLIOGRAPHY

By the de�nition of 	�

�	�� 	�� � c�
�	�� 	��fng � c� � fng � 	c

From �	���	��� by the de�nition of 	�

�	�� fng � c� � 	��fng � c�

From ���� by the de�nition of subtype relation
�	�� t� � t�
�	
� t�� � t��
���� c� � fng � c�

From �����	���	��� by the de�nition of e�ect models
��	� 	� j� f� � fng � cg

From �	����	�� by the de�nition of e�ect models
	� j� � � f� � fng � cg

From �		��	��� by the de�nition of 	�

��E � 	�E
���� t�� � 	�t�

From �
�� by the de�nition of 	�

���� 	�t � t�

From ���������	��� by the de�nition of subtype relation

���� 	��t�
�
� t� � t��

c�� t�

From �	���	
�� by the de�nition of subtype relation
���� t��

c�� t� � t��
c�� t�

From ��������

	��t�
�
� t� � t��

c�� t�

� Case of �rec�

The hypothesis is
��E � �recn �f x� e� � t��

c�� t�� �

By �rec� and �sub� rule in the static semantics

�	� ��E � �recn �f x� e� � t��
fng�c�
� t�� �

��� t��
fng�c�
� t� � t��

c�� t�



BIBLIOGRAPHY 	��

From �	�� by �rec� rule in the static semantics

��� ���E��f �� t��
fng�c�
� t���x �� t��� � e � t�� c�

If f and x is of the principal type � � � � � � � respectively�

let �t�
�
� t� � New�� � � ��� then there exists a substitution �� such that�

��� t��
fng�c�
� t� � ��t�

�
� t�

We de�ne a substitution of e�ect variables ���� such that �

���� �

�
�� � � fv�t�

�
� t�

��� otherwise

Note that since t�
�
� t includes only fresh e�ect variables� ��� is well de�ned�

From ���� by the de�nition of ���� ��� is equivalent with �

��� ����E �f �� t�
�
� t��x �� t��� � e � t�� c�

From ���� by induction

��� S�E �f �� t�
�
� t��x �� t��� e� � ht��� c� �i

�	� such that �
��� 	 j� �

��� ����E �f �� t�
�
� t��x �� t��� � 	�E �f �� t�

�
� t��x �� t���

�
� 	t�� � t�
�	�� c� � 	c

From ���� since t�
�
� t � New�� � � ��� by the de�nition of S

�		� S�E � �recn �f � � � � � x � � �� e�� � ht�
�
� t� �� ��E� �t�� � t��f� � fng�cgi

From ������� by the de�nition of ���
��E � 	E

�	�� t��
fng�c�
� t� � 	�t�

�
� t�

�	�� t� � 	t

�	�� fng � c� � 	�

From �
��	��� by Lemma ���
�	�� 	 j� E� �t�� � t�

From �	���	��� by the de�nition of e�ect models
�	�� 	 j� f� � fng � cg



	�� BIBLIOGRAPHY

From ����	���	��� by the de�nition of e�ect models
	 j� � � E� �t�� � t� � f� � fng � cg

From �	�����

	�t�
�
� t� � t��

c�� t�

� Case of �app�

The hypotheses is
��E � �e e�� � t�� c� � c�� � c���

By �app� and �sub� rules in the static semantics
�	� ��E � �e e�� � t�� c� � c�� � c���
��� t� � t�

From �	�� by �app� in the static semantics

��� ��E � e � t��
c��
�� t�� c�

��� ��E � e� � t��� c
�
�

From ���� by induction

��� S�E � e� � ht��
c��

� t� c� �i
�	� such that �
��� 	 j� �
��� ��E � 	E

��� 	�t��
c��

� t� � t��
c��
�� t�

�
� c� � 	c

From ���� by induction
�	�� S�E � e�� � ht�� c�� �i
�	�� such that �
�		� 	� j� ��

�	�� ��E � 	�E
�	�� 	�t� � t��
�	�� c�� � 	�c�

From ����	��� by the de�nition of S
S�E � �e e��� � ht� c� c� � c��� � � �� � E� �t� � t���i

We de�ne a substitution 	�� on fv�E � t��
c��

� t� c� ��� and fv�E � t�� c�� ���

	��� �

�
	� � � fv�E� t��

c��
� t� c� ��

	�� � � fv�E� t�� c�� ���



BIBLIOGRAPHY 	��

Note that ��� if � � fv�E � t�� c�� ��� and � � fv�E � t� c� ��
then by the de�nition of S� � � fv�E�
By ����	��� 	� � 	��� thus 	�� is well de�ned�

From ����		�� by the de�nition of 	��

�	�� 	�� j� �

�	�� 	�� j� ��

From ���� by the de�nition of 	��

�	�� 	���t��
c��

� t� � 	�t��
c��

� t� � t��
c��
�� t�

From �	��� by the de�nition of subtype relation
�	
� 	��t � t�
���� t�� � 	��t��

��	� c��� � 	��c��

From �	��� by the de�nition of 	��

���� 	��t� � 	�t� � t��

From ��������� by Lemma ���
���� 	�� j� E� �t� � t���

From �	���	������� by the de�nition of e�ect models
	�� j� � � �� � E� �t� � t���

From �	
����
	��t � t�

From �
��	����	�� by the de�nition of 	��

c� � c�� � c��� � 	���c � c� � c��� �



	�� BIBLIOGRAPHY



Appendix �

Proof of Theorem ���

Theorem ��	 �Well�Formedness of Abstract Semantics� If ��� �E � e� �v� �c andWF���� �E��
then

� ��v� �E� is well�formed�

� All ���
�
� �E

�
� used in the � derivation tree of e are well�formed�

Proof By induction on the number of reduction steps of expressions�

� The hypotheses are
�	� ��� �E � �a a��l � �r

i���vi��
r
i����ci � f�l�

���� fnigg�
��� WF���� �E�

From hypothesis �	�� by �app� in abstract semantics

��� ��� �E � a� f��ni�xi� ei�
��
�

i� j i � 	 � � �rg
��� ��� �E � a� � �v�

��� ��
�

i�xi �� �b
�
�� �E � e�i � �vi� �ci

��� �E�xi��b
�
� � �v�

where �b
�
� l and i � 	 � � �r

From ���������� by Lemma ��	

��� WF�f��ni�xi� ei�
��
�

i� j i � 	 � � �rg� �E�
��� WF��v�� �E�

From ���� by De�nition ��	

�
� WF���
�
i� �E�

From �������
�� by De�nition ��	

�	�� WF���
�

i�xi ��
�b
�
�� �E�

From �	��� by induction

All ���
�
� �E

�
� used in the � derivation tree of e are well�formed

	�




		� BIBLIOGRAPHY

From ����	��� by induction
�		� ��vi� �E� is well�formed

From �		�� by De�nition ��	
��r

i���vi�
�E� is well�formed �

Proof of Theorem ���

Theorem ��� �Consistency of Abstract Semantics�

b� �� E � e� v� c
��� �E � e� �v� �c

���E�� ���� �E�

����� �

�
�v� E�� ��v� �E�
c v �c

Proof By induction on the number of reduction steps of expressions�

� The hypotheses are
�	� ���E� � ���� �E�
��� b� �� E � �a a��l � v� c� f�l� ��� fngg
��� ��� �E � �a a��l � �r

i���vi��
r
i����ci � f�l�

���� fnigg�

From hypothesis ���� by �app� in the dynamic semantics
��� ��E � a� ��n�x� e� ���
��� ��E � a� � v�

��� b�� ���x �� b��� E � e� v� c
��� E�x� b�� � v�

where b� � b�l

From hypothesis ���� by �app� in the abstract semantics

��� ��� �E � a� f��ni�xi� ei�
��
�
i�g

�
� ��� �E � a� � �v�

�	�� ��
�
i�xi �� �b

�
�� �E � ei � �vi� �ci

�		� �E�xi��b
�
� � �v�

where �b
�
� l and i � 	 � � �r

From �	������� and �	�����
�� by Lemma ���

�	�� ���n�x� e� ���� E� � �f��ni�xi� ei�
��
�
i� j i � 	 � � �rg� �E�

�	�� �v�� E� � ��v�� �E�

From �	��� by De�nition ���� �j �	 � j � r� s	t	
�	�� �n�x� e � �nj�xj� ej

�	�� ���� E�� ���
�

j �
�E�



BIBLIOGRAPHY 			

From �	������		��	��� by De�nition ���

�	�� ����x �� b��� E�� ���
�

j �xj �� �b
�
�� �E�

From �	������	��� by induction
�	�� �v� E�� ��vj � �E�
�	��� c v �cj

From �	��� by De�nition ���
�v� E�� ��r

i���vi�
�E�

From �	���	���� by De�nition ���
c � f�l� ��� fngg v �r

i����ci � f�l�
���� fnigg� �

Proof of Theorem ���

Theorem ��� �Types of Abstract Semantics�

E � e � t� #c
��� �E � e� �v� �c

���� �E� � E

����� �

�
��v� �E� � t
�c v #c

Proof By induction on the number of reduction steps of expressions�

� The hypotheses are
�	� ���� �E� � E
��� E � �a a��l � t���n�#c��d�#c� f�l� ���� fngg�

��� ��� �E � �a a��l � �r
i���vi��

r
i����ci � f�l�

���� fnigg�

From ���� by �app� in the type semantics

��� E � a � t�
d
� t

��� E � a� � t�

From ���� by �app� in the abstract semantics

��� ��� �E � a� f��ni�xi� ei� ��
�

i� j i � 	 � � �rg
��� ��� �E � a� � �v�

��� ��
�

i�xi ��
�b
�
�� �E � ei � �vi� �ci

�
� �E�xi��b
�
� � �v�

where �b
�
� l and i � 	 � � �r

From �	������� and �	�������� by Lemma ���

�	�� �f��ni�xi� ei�
��
�

i� j i � 	 � � �rg� �E� � t
� d
� t

�		� ��v�� �E� � t�



		� BIBLIOGRAPHY

From �	��� by De�nition ���� �i �i � 	 � � �r�� �E �i s	t	

�	�� ���
�

i�
�E� � E �i

�	�� E �i � ��ni �xi� ei� � t
� d
� t

From �	��� by �abs� in the type semantics
�	�� E �ixi �xi �� t�� � ei � t� #ci
�	�� �ni� #ci� � d

From �	���		��
�� by De�nition ���

�	�� ���
�

i�xi �� �b
�
�� �E� � E �ixi �xi �� t��

From �	������	��� by induction
�	�� ��vi� �E� � t
�	��� �ci v #ci

From �	��� by De�nition ���
��r

i���vi�
�E� � t

From �	���	���� by De�nition ���
�r
i����ci � f�l�

���� fnigg� v ��n�#c��d�#c� f�l� ���� fngg� �

Proof of Lemma ���

Lemma ��� �Well�Formedness of A�t�� A�t� is well�formed�
Proof By induction on the structure of types

� Case int

By the de�nition of A
A�int� � ��� ���

By De�nition ��	
A�int� is well�formed

� Case �t� 	 t��
d
� t� where t� � t

d�

� t�

By the de�nition of A

A��t� 	 t��
d
� t�� � ��v

�� �E
�
�

where
�	� �v� � f��ni�x ki� ei� �xi �� li�� j i � 	 � � � qg

��� �E
�
� �E��xi� li� �� �v�

��� ��v� �E� � A�t�



BIBLIOGRAPHY 		�

From ���� by induction
��� A�t� is well�formed� i�e� ��v� �E� is well�formed

From ������� since xi is fresh � by De�nition ��	

��� ��v� �E
�
� is well�formed

From ���� by De�nition ��	

��� ��xi �� li�� �E
�
� is well�formed

From ����	����� by De�nition ��	

A��t� 	 t��
d
� t�� is well�formed �

Proof of Lemma ��	

Lemma ��� �Consistency of A�t�� If ��v� �E� � t� then ��v� �E� � A�t�
Proof By induction on the structure of types

� Case int

By the de�nition of A
�	� A�int� � ��� ���

Since ��v� �E� � t� by De�nition ���
��� ��� �E� � int

From �	����� by De�nition ���
��� �E� � A�int�

� Case �t� 	 t��
d
� t�

By the de�nition of A

�	� A��t� 	 t��
d
� t�� � ��v

�� �E
�
�

where
�v� � f��ni�x ki� ei� �xi �� li�� j i � 	 � � �qg
d � f�ni� #ci� j i � 	 � � � qg

Since ��v� �E� � t� by De�nition ���
��� ��n� ��� � �v� �E � s �t � ���� �E� � E
��� E � n � t

From ���� by the �abs� rule in the e�ect semantics
��� �#c� s	t	 �n� #c� � d



		� BIBLIOGRAPHY

From �	�������� by De�nition ���
��v� �E� � A�t�

Proof of Lemma ���

Lemma ��� �Simulation� For any ��� and �E�� if

����xi �� li��ki �� lk�� �E���xi� li� �� �v���ki� lk� �� fIdg� � S�#ci� ki� xi� l�� �v� �ci

then D��ci� � #ci � f�l� ���� fIdgg�

Proof By induction on #ci

Supposing �j � 	
��
�
j � ��j �xi �� li��ki �� lk�
�E
�
j � �Ej ��xi� li� �� �v���ki� lk� �� fIdg�

� Case #ci � ��

By the de�nition of S
S���� ki� xi� l� � �ki xi�l

By the abstract semantics� since ki is bound to Id
��
�
�� �E

�
� � �ki xi�l � �v� f�l� ��

�
��� fIdgg

By the de�nition of D

D�f�l� ��
�

��� fIdgg� � f�l� ���� fIdgg

� Case #ci � #c�i � f�l
�� ���� fn� � � �nrgg

By the de�nition of S
�	� S�#ci� ki� xi� l� � S ��fn� � � �nrg� #c�i� l

�� ki� xi� l�

By the de�nition of S�� �j � 	 � � �r
��� S��fnj � � �nrg� #c�i� l

�� ki� xi� l� � � ��nj �kj� S
��fnj�� � � �nrg� #c�i� l

�� kk� xi� l�� ki �l�

Note that fnj�� � � �nrg � �

By induction on j� we prove that
��
�

j �
�E
�

j � S
��fnj � � �nrg� #c�i� l

�� ki� xi� l�� �v� �c� such that
D��c�� � #c�i � f�l� ���� fIdgg � f�l�� ���� fnj � � �nrgg
where
�c� � �c�i � f�l

�� ��
�

j�� fnjgg � � �f�l
�� ��

�

r�� fnrgg
��j�� � ��j �kj �� l��
�Ej�� � �Ej ��kj � l

�� �� ki�



BIBLIOGRAPHY 		�

� Case j � r  	

By the de�nition of S�� since fnr�� � � �nrg � �
��� S���� #c�i� l

�� ki� xi� l� � S�#c�i� ki� xi� l�

From ���� by the induction on #ci
��
�

r���
�E
�
r�� � S

���� #c�i� l
�� ki� xi� l�� �v� �c�i such that

D��c�i� � #c
�
i � f�l� ���� fIdgg

� Case j � 	 � � �r

By induction on j

��� ��
�
j��� �E

�
j�� � S

��fnj�� � � �nrg� #c�i� l
�� ki� xi� l�� �v� �c� such that

��� D��c�� � #c�i � f�l� ���� fIdgg � f�l�� ���� fnj�� � � �nrgg
where
�c� � �c�i � f�l

�� ��
�

j���� fnj��gg � � �f�l�� ��
�

r�� fnrgg

From ������� by the abstract semantics
��
�

j �
�E
�
j � S

��fnj � � �nrg� #c
�
i� l

�� ki� xi� l�� �v� �c� � f�l�� ��
�

j�� fnjgg

From ���� by the de�nition of D

D��c� � f�l�� ��
�

j�� fnjgg� � #c�i � f�l� ���� fIdgg � f�l�� ���� fnj � � �nrgg

From �	�� using the initial abstract value environments ��
�

� and �E
�
�� we get �

��
�

��
�E
�
� � S�#ci� ki� xi� l�� �v� �ci such that

D��ci� � #ci � f�l� ���� fIdgg
where
�ci � �c

�
i � f�l

�� ��
�
��� fn�gg � � �f�l�� ��

�
r�� fnrgg �

Proof of Lemma ��

Lemma ��� �Well�Formedness of ����� �E��� � ���� �E�� is well�formed�
Proof

� By the de�nition of ����� �E��
�	� �x � Dom������ �x� ����x�� � Dom� �E��
��� �E��x� ����x�� � �v
��� Dom� �E�  Dom� �E��
��� ��v� �E� � A�E�x��

From ���� by Lemma ���
��� ��v� �E� is well�formed

From ������� by De�nition ��	
��� ��v� �E�� is well�formed



		� BIBLIOGRAPHY

From �	�������� by De�nition ��	
�����

�E�� is well�formed �

Proof of Lemma ���

Lemma ��� �Consistency of ����� �E��� If � ��
�

��
�E
�
�� � E � then ���

�

��
�E
�
�� � ����� �E��

Proof

� By the de�nition of ����� �E��
�	� �x � Dom�E�� x � Dom�����
��� �E��x� ����x�� � �v
��� Dom� �E�  Dom� �E��
��� ��v� �E� � A�E�x��

Since ���
�

��
�E
�
�� � E � by De�nition ���

��� �x � Dom���
�
��� x � Dom�E�

��� � �E
�
��x�

��
�

��x���
�E
�
�� � E�x�

From ���� by Lemma ���

��� � �E
�
��x�

��
�

��x���
�E
�
�� � A�E�x��

From ������

��� � �E
�
��x� ��

�

��x��� �E
�
�� � ��v� �E�

From ������� by De�nition ���

�
� � �E
�
��x�

��
�

��x���
�E
�
�� � ��v� �E��

From ����	�

�	�� �x � Dom���
�

��� x � Dom�����

From �	���
����� by De�nition ���

���
�

��
�E
�
�� � �

���� �E�� �


