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Abstract

The increasing complexity of embedded real-time ar-
chitectures, as well as the design of critical systems, has
become both difficult to manage and costly. Mapping
statically the set of tasks onto a multi-processor system
is one of the most crucial issues. The designer must
guarantee system feasibility, based on the system model
and consideration of design decisions with respect to the
requirement set. Our approach combines well-known
online preemptive scheduling algorithms and their asso-
ciated feasibility conditions, with problem solving tech-
nigues that are based on Constraint Logic Programming
(CLP). We address a large class of online preemptive
scheduling algorithms including so called fixed prior-
ity policies (Highest Priority First - HPF), as well as
dynamic priority policies (specifically, Earliest Dead-
line First - EDF). The paper presents how to solve the
mapping problem on representative examples, consid-
ering globally both task placement and hard real-time
schedulability constraints. Optimization techniques are
also experimented in order to minimize system dimen-
sions. Lastly, we outline different recommendations for
the design of efficient search strategies. Several bench-
marks from various domains are considered as running
examples throughout the paper.
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that all the decisions made during the system design satisfy
system specification.

The complexity of target architectures has increased too,

with many functional units incorporated on a single chig, th
placement of tasks onto the set of processors remains a com-
plex problem raising combinatorial explosions. It is neces
sary to consider simultaneously several interdependdént su
problems such as task scheduling and placement. Usually
highly combinatoric, each of these problems is charaadriz

by feasibility constraints and design decisions (scheduli
policy, data allocation strategy, communication protsol
Therefore, applying a proof-based method requires maltipl
formulations for the representation of the global systetre T
modelling phase of the method captures the invariants of the
system specification, but also decomposes and simplifies its
design complexity from coarse to fine grain. The designer
has to solve a task placement problem, and must guarantee
real-time schedulability. Evenmore, the designer needs to
optimize the architecture to fit some space requirements or
to optimize system performances.

Our approach relies on Constraint Logic Programming on

finite parts of N CLP(FD) with all its classical operators

(Van Hentenryck et al. 95). We claim that this language can
solve and possibly optimize the design of complex hard real-
time systems. One area of experimentation for Constraint

Deficiencies in the design or dimensioning of a critical and Programming techniques has been the automatic data-layout
real-time high-performance system can cause fatal failure Of High-Performance FORTRAN programs onto parallel

In order to prove that for an entire system, real-time and ar-
chitectural size requirements are met, it is necessaryoteepr

its dimensioning. A relevant example of correct system di-
mensioning is ensuring that the processing resourcesfare su
ficient. This is a huge task as the increasing complexity of
systems involves designs of combinatoric complexity. To

master the complexity of system specification and design,

we consider a proof-based methodology, like TRIAE dis-

cussed in (Le Lann 97)(Le Lann 98). TRDF allows trans-
lation of the (incomplete and/or ambiguous) description of
an application problem into a precise specification. To be

computers, using — 1 modelling, CPLEX and branch-and-
bound searches (Bixby and al. 94). Using CLP, relevant re-
sults have also demonstrated the efficiency of the approach
for modelling and solving Digital Signal Processing place-
ment problems (Ancourt and al. 97),(Thiele 97). Another
area of investigation has been the engineering of real-time
(multi-processor) applications (Bacik and al. 98),(Gieett
and Hermant 99). For all these examples, it has been neces-
sary to solve the global problem globally using a composite
model.

This paper presents a global approach for solving or opti-

acceptable, computer-based systems must come with proofsmizing automatically the mapping of real-time tasks onto

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1TRDF is the French acronym of Real-Time Distributed Fault-
Tolerant Computing.

multi-processor architectures using CLP. Focusing on the
feasibility conditions of real-time scheduling algoritbm
generic models and search methods are proposed to tackle
the mapping feasibility, as well as the system size opti-



mization. The different modelling steps required to expres
tractable feasibility conditions in CLP are detailed for an
exhaustive class of online scheduling policies. It encom-
passes necessary and sufficient feasibility conditionsrier

line scheduling algorithms such as Earliest Deadline First
(EDF), Highest Priority First (HPF), as well as its specali
tions, Deadline Monotonic (HPF/DM), and Rate Monotonic
(HPF/RM). In spite of their complexity, we demonstrate that
analytical feasibility conditions can be expressed asvequi
alent feasibility constraints with CLP. Different comptesi
search strategies are also proposed, combining load balanc
ing and priority assignement (Audsley 1991) techniques.
This association of offline solving techniques with online
scheduling solutions is a new approach to the proof-based
design of complex distributed and real-time systems.

Problem Specification

In this section, we specify the problem under consideration
according to the TRDF method (Le Lann 97),(Le Lann 98).
First, system requirement capture is summarised. Require-
ments are modeled in a fairly standard fashion, taking into
account the problem models. Second, we state the major
problem property, i.e. the timeliness property. As a regult

is possible to meet hard real-time constraints that woutd no
be satisfied with a single processing element.

Models of System Requirements

In subsequent sections of the paper, demonstrations are per
formed using the assumptions that follow. System require-
ments define a global design problem that must be broken
down into several sub-problems of lower complexity. Each
sub-problem can be modeled with its own mathematical in-
variants. Finding a set of feasible solutions to a given sub-
problem requires the instantiation of all the variableshef t
sub-problem. Relations resulting from this decomposition
correlate model variables. They maintain the consisteficy o
different local solutions and thus feasibility of the glbba-
lution.

Computational Model We assume the synchronous com-
putational model (task durations have known bounds). With-
out loss of generality for the models described in this paper
we will use a discrete time model:c N.

Task Model Let 7 be the task set to execute. We consider
a level of specification where each task  is represented

by a sequence of steps, each step being mapped onto exactly,

one processor. A task has a worst case computation time
Vi, C; € N which can be constant or variable offline. When

it is variable, upper and lower bounds exist and their values
are known.

External Event Types Models All tasks are ready to exe-

Vi, 3¢i,0 €N, Va; € N,

d(a;) = ¢io + a;T5,

Vi,Vj €N, 3¢i; €N, Ya; € N
d(a;) = Z @i + a;T;
=0

The period/minimal inter-arrival time of taskis denoted
T; € N*

The concrete or non-concrete attributes of task
Concreteip; o known. {¢i; }jen known.
Non-concretep; o unknown.  {¢; ;};en unknown.

whereg, ¢ is a phase differencgp; ;};cn are phase differ-
ences. The sporadic model is more general than the peri-
odic model (Mok 83) and our approach holds for both arrival
models.

In subsequent sections of the paper, we considee-a
riodic/sporadic non-concrete traffic =, which is a fi-
nite set ofn periodic/sporadic non-concrete traffics A
periodic/sporadic non-concrete traffi¢ captures an infi-
nite set of periodic/sporadic concrete traffics A peri-
odic/sporadic concrete traffig is caracterized by its known
activation dates{d(a;)}4,en, its worst case computation
time C;, its period/minimal inter-arrival tim&;, and its rel-
ative deadlineD;. Va; € N, d(a;+1) — d(a;) > T; and
0 < C; < Min{T;, D;}. The term traffic is commonly used
in the telecommunication community to refer to a task set.
These two terms can be used indifferently.

Task Placement Model For each task, we use a coarsed
grain placement form in order to size the task workload ac-
cording to the whole target architecture. At a first glance,
this can be formulated using classical set partitioning for
mulations.

Architectural Model The architectural model is MIMD
“Multiple Instruction Flow, Multiple Data Flow”, where the
different processors can execute multiple instructionmin

allel. The architecture is homogeneous, worst case compu-
tation timeC; does not depend on which processof is
placed.

Property
To be feasible, the solution must satisfy the timelinesgpro
erty, under the models described above.

Tasks are assigned timeliness constraints: latest termina
tion deadline. A solution is said to be feasible if for ev-
ery possible system run, every timeliness constraint is met
Values of deadlines are dictated by application considera-
tions. A deadline can be expressed as a natural number:
VierT, D; € N*

Example of real world specifications

cute whenever requested. Activation demands of a task are This section presents three realistic specifications etetda

constrained by a periodic or sporadic arrival model (Mok
83).
Periodic Sporadic

The (a; + 1) activation date of taskis denotedi(a;).
The first activation date of tagkcorresponds ta; = 0.

from real world applications discussed in (Tilman et al.
01),(Guettier and al. 01), that are used as on-going exam-
ples throughout this paper. Althought various cost fumgio
could be investigated, finding a feasible solution on a min-
imal set of processors is considered to be the engineering
cost objective.
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Figure 1: Example of @let ecti on system o Mission |+~ Communication
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Figure 2: Example of arobser vati on spacecraft { devices | |_datlink i command |
system.
Task C(ms) T (ms) D(ms)
attitude_control 3 8 8
Detection system: As a simpler example, we propose a . a - 2
detection system (typical of airborne radars or sonarg) tha gps_update _ 5 40 11
manages a list of targets. A Digital Signal Processing syste autopr ot ection. o i o
(out of the scope of the example) processes a beamforming [ _speedcontrorler 2 10 11
. gyro.acqui sition 6 10 15
algorithm (Ancourt and al. 97). beamT nput 7 o =
commanager 2 15 14

Spacecraft system: This system performs some observa- ) o

tions and saves its data on a mass memory (Tilmanetal. 01).  Figure 3: Example of atlAV avi oni ¢ system.
Controled remotely from earth, the spacecraft can neverthe

less perform Fault Detection Isolation and Recovery. Data

can be unloaded or new pictures ordered using a communi- Furthermore, throughout the modelling, constraints are re
cation antenae. fined in order to be tractable with CLP capabilities.

UAV Avionic system: It is a typical (although very sim- ~ Mapping models

plified) core functional architecture (fig. 3) of a Unmanned  The mapping of real-time applications can be decomposed
Aerial Vehicle (UAV) system (Guettier and al. 01). It per-  jnio task placement, architectural and relational modgss.
forms some observations that are downloaded, following a partitioning is expressed usirig— 1 formulation and repre-
predefined mission plan. According to situation awarness, sents task distribution. The architectural model is then ex

the mission manager task sends limited corrections to the pressed as a resource constraint. Additional relatioass-st
speed and altitude controller tasks. It can also send &tuat  ments ensure the global solution consistency.

information to a remote operator. o
Task placement as set partitioning We use & — 1 for-

Hard real-time scheduling & mapping models ~ mulation fo specify whether the processds allacated foa

. . . given taski. This model has been widely investigated for the
This section presents the constraint based model_ o]‘_the hard representation of various combinatorial problems invagvi
real-time scheduling and mapping problem. Feasibility-con ¢ partitioning (Gondran and Minoux 95)
straints of scheduling algorithms are extracted from thtest '
of the art in hard real time computing and modeled using a

CLP(FD) language. o Vi€ T, Vp € [0,Pras), m), € {0,1}
The mapping model, based on a set partitioning formu-
lation is at first defined. A more generic formulation than ) Prmas =1 i
well-known uniprocessor scheduling feasibility conditso vier, Z my =1 @)
p=0

is then detailed. These necessary and sufficient consraint
are involving variable€’;, T;, D; as well as task partition-
ing. The modelling includes Highest Priority First (HPF)
like Deadline Monotonic (DM), Rate Monotonic (RM) as
well as Dynamic Priority classes of scheduling such as Ea
liest Deadline First (EDF). Architectural resource constraints The number of busy

In order to improve the problem solving efficiency, sev- processord® has an upper-bound determined by the con-
eral decisions in problem representation have to be made. In stantP,,,,... It defines the number of processors required
the sequel, we explain how the modelling is refined in order to map the entire task and is given By = card{p €
to extract sufficient conditions, used as heuristic conssa [0, Ppnaz)|3i € 7/mi = 1}.

Statement (1) specifies that a tas& allocated to a single
processop iff m;, = 1. Using this formulation, the actual
r- partitioning may lead to a lower number of busy processors.



Prmaz—1

- Y
p=0
Relational Constraints Relational statements between
models are required to retrieve global consistent solstion
and to globally optimize cost functions such as the system
size.

)

max{m }
1ET

Vie T, Vp € [0,Praz), Ci(p) = Ci.mzi) 3)
Modelling feasibility constraints of online

scheduling algorithms

The scheduling algorithms under consideration belongdo th
class of online real-time scheduling algorithms. In thassl,
there are two subclasses: that of deadline-driven schegluli
algorithms and that of fixed-priority scheduling algorithm

EDF belongs to the former subclass and dominates any

other scheduling algorithm belonging to the latter suls;las
such as, for instance, Highest Priority First/Deadline kton
tonic (HPF/DM) and Highest Priority First/Rate Monotonic
(HPF/RM) (Dertouzos 1974).

This section gives feasibility conditions for EDF and HPF
policies, which allows us to conduct a comparative study in
terms of constraints complexity.

Basic concepts This section defines the basic concepts in-
troduced in (Liu and Layland 73). Further sections extend
the approach and recast feasibility conditions into tizleta
constraints for CLP languages.

The workload W(p,t,7): By definition, the workload
W (p, t, ) for each processqris the amount of time that is
needed to run all the tasks whose activation times g i)
(Baruah et al. 1990b). To give the expressioMofp, ¢, 7),
we consider the synchronous concrete traffie 7, where
Vi, Vj € N, ¢iJ =0.

Wi(p,t,7)=>_ W(p,t,j) Z[{;—‘Cj(p)- 4

JjeT jeT

A necessary feasibility condition (NC): This well-known

the limit of W (p, ¢; 7) /t ast tends to infinity. I1fP,(7) is feasible
by EDF, thenl/ (p, 7) < 100%.

Using exact feasibility conditions for EDF

The EDF policy works as follows (Liu and Layland 73).
At any timet € R, if there are pending tasks (i.e., tasks
which have been previously activated but which have not
been fully completed yet), EDF runs the task which has the
earliest absolute deadline. The processor is then said to be
busy. To decide between tasks having the same absolute
deadline, EDF makes use of a tie-breaking rule (e.g., a ar-
bitrary order). If there are no pending tasks, EDF runs no
task. The processor is then said to be idle (see example in
figure 4). In this paper, we consider preemptive versions for
EDF and its associated analytical feasibility conditions.

The processor demandh(p, ¢, 7):

h(p,t,7) =Y hip,t,j)
j=1

- Xn:Max {0,1+ V_ijjJ } C;(p)

JET
By definition, the processas demandh(p,t, 7) is the
amount of time that is needed to run all the tasks whose ac-
tivation times and absolute deadlines ar¢lint] (Baruah et
al. 1990b). To give the expression/dp, t, 7), we consider
the synchronous concrete traffice 7.

(6)

A necessary and sufficient feasibility condition (NSC):

7 is feasible by EDR=

vt € RY, h(p,t,7) < t; (7

7 is feasible by EDR= Sup;cp+- {M} <1. (8)

sketch of the proof:

By definition, the processor demandp, ¢, 7) is the amount of
time that is needed to run all the tasks whose activationgtiamel
absolute deadlines are jf, ¢]. 7 is feasible by EDF, if and only

necessary condition can be used as a heuristic to solve theif, vp ¢ [0, Pa.),Vt € RT, h(p,t,7) < t, i.e., if and only if,

global problem.

“.C
D

Jj=1

7 is feasible by EDF, HPE> Vp € |

<1

(5)
sketch of the proof:
We derive the utilization factol/(p, ) from the workload
W(p,t;7):

U(p,T):Lithoo{(p’t’ipp} Z T

By definition, the utilization facto¥ (p, 7) for processop is the
fraction of time that is needed to run all the tasks dderc), i.e.,

maz Y

Supiep+= {h(p,t,7)/t} < 100%.

Study interval: In order to be operationally satisfied, fea-

sibility constraints cannot be stated @i*. Although

the processor busy period(Hermant et al. 96),(Hermant

98) is a candidate interval, the resulting constraints ate n

tractable in a CLP model. Instead, the study interval isset t

L = gem(T;) and is preprocessed. Therefore, equation (8)
1ET

becomes:

7 is feasible by EDFs Supqe (o.1) {M} <1 (9



4 2 j
v =% 08 (10)
=1 g
T A
A= [T—‘ C; = 390ms (11)
=1 v
Vvt € [0,390), h(0,t,7) <t (12)

Figure 4: Mapping of thelet ecti on systemonto a
single processor

Example of feasible mapping: A feasible mapping of the
det ecti on syst emonto a single processor can be de-
rived. The utilization factot/ (0, 7) is given in (10). Instead

of L, the length of the busy perioM is used as the study
interval (11). Lastly, the necessary and sufficient feasibi
ity condition for EDF (12) holds true, illustrated by a feasi
ble schedule of the synchronous activation scenario (worst
cases) in fig. 4.

Using exact feasibility constraints for HPF At any time

t € RT, if there are pending tasks (i.e., tasks which have
been previously activated but which have not been fully
completed yet), HPF runs the task which has the highest
priority (Liu and Layland 73). Priorities can be allocated
according to deadlines (said to be deadline monotonic) or
period (also called rate monotonic). The highest priority
correponds respectively to the lower deadline or the lower
period. Priorities can also be computed statically in order
to optimize the execution (Audsley 1991), for example, by
maximizing the workload. As for EDF, we consider a peri-
odic/sporadic non-concrete trafficwhich is a set ofi peri-
odic/sporadic non-concrete traffics When a set of tasks is
allocated to the same processor, a priority order is assatia
to 7, as follows.

Priorities:

Yier,Vjer/i£j, Ip/

(mP=DAmb =1)& (j<)V@=<j) (13

whereV the exclusive or.

Response timer(p,t,i,7): To establish necessary and
sufficient conditions as schedulability constraints forFHP
(Lehoczky 90), (Tindell and al. 94), one has to consider the
worst case response timép, t,4, 7) € N associated to task

1 and processags. The task set is feasible, if and only if, for
each task, at any activatiort, the response time meets the
deadlineD;:

7 feasible by HPR=
Vp € [0, Pmaz), Vi € T,Vt € [0,00),7(p, t,i,7) < D;

Workload w(p,t,i,7): For each task, the response time
can be rewritten using the workload(p, a,i,7) € N, as
follows:

Vi€ 1,Yp € [0,Ppaz), Vt € [0,00),
T(patvivT) = w(pvtvivT) —t

Let us consider a task(of priority 7). In [0, ¢], the maxi-
mum number of executions of tasks 1 + |t/T;|. For each
taskj (of lower priority j < 4), in [0, w(p, t,4, 7)), the max-
imum number of executions of tagkis [w(p,t,,7)/T};].
Hence, the workload can be written as follows:

wwein = (1+|z]) e &

JET/j<i
The resulting necessary and sufficient condition: By re-
placingr(p, t, 4, 7), it follows that:

{w(p, t,4,7)
J

B
(19)

T feasible by HPR= Vi € 7,Vt € [0, 00),Vp € [0, Pinaz),

This set of equations converges to a fixed point, which can
be solved using the fixed point semantics of CLP languages.
A tractable interval for activation§), t) must be specified
forimplementing the constraint using a CLP language. First
a maximal study interval can be specified using the greater
common multiple of the periods/sporadicities. Second, for
each task, activations can be formulated using the assdciat
period/sporadicity according to the worst case analygiss T
leads to:

Vi e, tel0,lem(Ty))

jer
(16)
(17)

Vi e T,Vt € [O,lcem(Tj)), dg; |t = ;. T; =
JET
Vi e T, qu S [O, lCem(TJ)/TZ)
JEeT
As for EDF (in eq. 9), thdem constraint, which has
not received efficient implementation yet, is preprocessed
Here again, upper-approximation may be found in order to

keep the global problem tractable by CLP. Using constraints
(16,17) constraint (14) can be simplified:

w(p, ¢ii,7) = (1+a:)Ci+ Y {MW Ci(p)

= T}
JET/j<i

such that the NSC (15) becomes:



Processor 0:

Processor 1:

U(t,0,7)=U(t,1,7) =40
Ao = 150 ms and\; = 170 ms

(1)
(22)

Figure 5: Mapping of thedet ecti on_syst em using
HPF/DM or HPF/RM and HPF/DM onto two processors.

7 feasible by HPR=
Vi € T,Vq; € [O,Z%m(Tj)[,Vp € [0, Prmaz),
JEeT

Lastly, the priority order (13) may not be instantiated.
Therefore, the formulation (18) leads to the enumeration
of all priority order without the consideration of constrai
propagation. A more efficient approach is to model the pri-
ority order using a permutation matri, such that state-
ment (18)< (20):

Pe {07 1}car¢i(‘r)><card(‘r)
6/ = PC_;, f/ = va U;/(paq’ivT) = Plﬁ(pv inT)
w’ b, 4, ia T)
{(#—‘ O;' (p) (20)

J

W (p,giyi,7) = (L+a)Ci + )
j€[0,4)

Example of feasible mapping: An optimal mapping (in
terms of the number of processors) of thet ecti on
syst emcan be given on two processors, using a HPF
policy (fig. 5). It considers tasks nsert _t ar get
and di st ance_eval placed onto processod, while
tasks pursui t t arget and suppress_target are
placed onto processon. For processor0, task
i nsert _target is assigned the highest priority, while
task di stance_eval is assigned the lowest. This as-
signment corresponds to the Deadline Monotonic (DM) or
the Rate Monotonic (RM) fixed priority assignment. For
processoi, taskpur sui t _t ar get is assigned the high-
est priority, while tasksuppr es_t ar get is assigned the
lowest. This assignment corresponds to the Deadline Mono-
tonic fixed priority assignment.

This placement defined can also be computed automati-
cally using the CLP models implementation.

Automatic Solving Using CLP Language

Several problems can be solved using models presented.
Specific periods, deadlines, response or computation times
that would be related to an applicative function (such that
the worst case durations of the UAV control tasks) can be
solved. However, within the scope of this paper, the focus
is on a non-functional requirement: the minimal number of
required processoi

Search strategies

This section presents the main design concepts for search
strategies dedicated to the scheduling and mapping problem
under consideration.

Elementary search The elementary search strategy is
based on thé abel i ng and Branch & Bound predicates,
provided in most of CLP implementations (Carlsson et al.
97). Even when problem models are tractable, these basic
strategies are too weak to cope with the largest problem in-
stances.

Load balancing strategies So called load balancing
heuristics can be introduced as static heuristics, or as a dy
namic search strategy. These heuristics and strategidsecan
used for both HPF and EDF scheduling policies.

Static heuristic: This strategy is similar to elementary
search, but disjunctive constraints on the utilizatiortdac

are added in order to statically decompose the search space.
This strategy structures the search space in favour of as-
signements that do not under-utilize processors (alsedall

no starvation heuristic).

Dynamic balancing search strategy: Instead of using
standard abel i ng predicates, this strategy reorders dy-
namically’ the set of variables to explore. Each time a place-
ment variablemg is successfully instantiated (which indi-
cates that task is placed on processg), a set of variables
M, = {m},...m}} is selected according to the least uti-
lized processop. The selection function tests the minimal
bounds of constraint variableg/ (k, 7)}§ ™. Then, the
strategy attempts to instantiate one variable of thel$gt

If one variable can be successfully instantiated, theesgsat
starts over until all the tasks are placed. Otherwise, ikbac
tracks and another processor is selected according to-the in
creasing order of utilization factors.

Uniprocessor optimal priority assignment heuristic:

The last search strategy to be investigated relies on the
uniprocessor optimal priority assignment (PA) (Audsley
1991). Using this method, only the problems involving HPF
scheduling policies can be improved. Far from being opti-
mal on multi-processor problems, this PA method can nev-
ertheless be used as a heuristic. The search strategy first

2Here, the term 'dynamic’ does not mean that the strategy is
performed online, but that the construction of the seareb ts
dynamic (e.g. during the search itself).



enumerates the set of placement variables, for each proces-(completeness can be proved only for the 26 easy instances

sor and each taskz;. Then, for each processor, the opti-
mal PA is performed. It consists of instantiating tasks of a
highest priority first, without backtracking on these assig
ments (Audsley 1991). Still complete, this technique obvi-
ously simplifies the search complexity. The PA heuristic can
be used in combination with both static and dynamic bal-
ancing strategies but may conflicts with the load balancing
strategies.

Experiments
Six combinations of strategies (figure 6) and scheduling

of thedet ect i on_syst embenchmark).

When considering the EDF policy, the number of prob-
lems solved is 5% better (6% better for the proofs of com-
pleteness) by replacing the static load balancing hearisti
with a dynamic search. This is also the case for the HPF
policy using the priority assignments heuristic, but ordy f
the proof of completeness (41 versus 39 instances). As a re-
sult of the conflicting strategies, the dynamic load strateg
combined with the PA heuristic gives a reduced performance
on the number of problems solved (57 versus 66 instances).

policies have been experimented on 522 problem instances, Evaluation of solutions

optimising for the number of processors. The elementary
strategy without any heuristic does not give meaningful re-
sults in reasonable time, until the static load heuristic is
added.

Problem generation method

The experimentation method relies on the real world exam-
ples. A problem generation technique operates by itefgitive

Figure 7 compares the number of processors found for the
two non-trivial benchmarkssfpacecr aft .syst emand
uav_avi oni c¢), when decreasing the global laxity. Using
the EDF policy, search strategies find a smaller number of
processors. Furthermore, using this policy, more problems
can be (optimally) solved in the time limit imposed. By con-
vention, when the strategy fails to give any feasible sohuti

or to prove that the problem instance is not feasible, a ver-

decreasing of 5% the task deadlines until problem instances tical line is drawn. As for the global results, the priority

becomes infeasible for the maximum number of processors
This way, problem instances become more difficult by de-
creasing the global laxity of the hard real-time constsint
Experiments are performed on a 1Ghz Intel Il processor,
with 256 MBytes of main memory and WindowsXP Pro and
SICStus Prolog 3.9.0, using finite domain constraint liprar
(Carlsson et al. 97).

Global results

The subset of experiments under consideration (figure 6) en-

ables the comparison of the different policies (namely EDF
and HPF) for the mapping problem, as well as the various
strategies proposed. Figure (figure 6) includes data gather
from the three benchmarks. On this figure, the colurast
solutionsis the number of instances for which at least one
solution is retrieved. The columproof of completeness

the number of instances for which the problem is solved op-
timally or for which it can be proved that no feasible soluatio
exist.

policy, strategy

EDF, static load

HPF, static load

HPF, static load, PA
EDF, dynamic load
HPF, dynamic load
HPF, dynamic load, PA

[ number of instances] best solution | proofs of completeness

87 82 62
87 65 26
87 76 39
87 86 66
87 66 26
87 57 41

Figure 6: Experiments under consideration

At first glance, experiments suggest that solving the map-
ping problem with an EDF scheduling policy is easier than
with its HPF equivalent. Globally, the priority assignment
heuristic improves the search efficiency (for HPF cases),
when the static load heuristic is activated. For HPF cases
and without the priority assignment heuristic, the strateg

. assignment heuristic improves the costs, except for the con
flicting load balancing strategy.

Strategy performances

For the purpose of the experiments, a time-out is imposed
on the different runs. Therefore, experiments that suecess
fully yield to a proof of optimality (mainly on benchmarks
det ecti on_system and spacecr aft system are
separated from experiments that lead to optimized solu-
tions, without guarantee of optimality (mainly on bench-
marksspacecr af t _syst emanduav_avi oni c).

Time for proving optimality ~ Figure 8 gives the different
completion times for benchmarkpacecr aft syst em

to prove solution optimality according to the dif-
ferent search strategies. Concerning the benchmark
det ecti on_syst em the proof of optimality can be per-
formed for all the experiments with and 4 processors.
However, due to the little differences between solving du-
ration and the small problem size, the curves are not repre-
sented in this paper.

With the EDF policy, proof of completeness can
be performed on all the problem instances of the
spacecr af t _syst emin figure 8, and similarly on parts
of the problem instances of theav_avi oni c. In gen-
eral, the time for proving the optimality is not modi-
fied when replacing the load balancing heuristic with the
dynamic load balancing strategy. For the benchmark
spacecr af t syst em and using the priority assignment
heuristic, proofs of optimality can be performed for a subse
of instances. The dynamic load balancing strategy improves
the solving time only for two instances. Without the prigrit
assignement heuristic, strategies fail to prove compésten

' for the HPF scheduling policy in the time limit (7 seconds).

fail to prove completeness for any of the problem instances Time for finding an optimized solution Figure 9 gives

in benchmarlspacecr af t _syst emanduav _avi oni ¢

the completion times for benchmaulkav _avi oni c to find
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Figure 7: Theuav_avi oni c example (6 processors): com-
parison of the minimal number of processors with different
search strategies

an optimized solution. The time out range is 20 seconds.
Again by convention, a vertical line is drawn when the solv-
ing strategy fails to produce any feasible solution or tospro
that the problem instance is not feasible. It is not obvious
that the dynamic load balancing strategy improves the solv-
ing duration on 9-a. Furthermore, as shown on figure 9-
b, the conflict of this strategy with the priority assignment
heuristic gives a counter-performance (instances under 20
of laxity cannot be solved). In contrast, for the EDF pol-
icy, strategies are improved with the load balancing heuris
tic, even for the set of non-feasible instances (as shown on
figures 9-a and 9-b).

Conclusions and Further Work
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Figure 8: Time to complete proof of optimality on the
spacecr af t _syst emexample (4 processors)

tive scheduling is solved completely offline. The constrain
based modelling described in this paper has a larger applica
tive impact, as many real-time operating systems for embed-
ded applications make use of HPF policies. Furthermore,
using these constraint-based models, various mapping prob
lems can be solved. On realistic benchmarks, experiments
have shown that proofs of completeness can be found in rea-
sonable time.

The paper illustrates how to support the engineering of
distributed real-time systems using a proof-based method.
As a matter of fact, a generic heuristic, such as load bal-
ancing performs better with EDF. With other HPF policies,
the benefit of this heuristic is not clear, even using dynamic
search techniques that are generally recognized as strong
strategies. It is very difficult to conclude on the gain of the
priority assignment heuristic, although dedicated to tRé-H

This paper demonstrates that the necessary and sufficientscheduling policy.

conditions can be preserved while modelling the feasibil-
ity of HPF and EDF preemptive scheduling policies using
a CLP language. From a Constraint Programming point
of view, this represents an interesting alternative to the
fully static approach generally considered, where preemp-

Most importantly, the paper shows for real world exam-
ples that the design of distributed real-time architectise
simpler using EDF policies. On various problem instances
with the EDF policies, strategies have been able to prove
search completeness. As a result, the solution optimality
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