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Abstract

The increasing complexity of embedded real-time ar-
chitectures, as well as the design of critical systems, has
become both difficult to manage and costly. Mapping
statically the set of tasks onto a multi-processor system
is one of the most crucial issues. The designer must
guarantee system feasibility, based on the system model
and consideration of design decisions with respect to the
requirement set. Our approach combines well-known
online preemptive scheduling algorithms and their asso-
ciated feasibility conditions, with problem solving tech-
niques that are based on Constraint Logic Programming
(CLP). We address a large class of online preemptive
scheduling algorithms including so called fixed prior-
ity policies (Highest Priority First - HPF), as well as
dynamic priority policies (specifically, Earliest Dead-
line First - EDF). The paper presents how to solve the
mapping problem on representative examples, consid-
ering globally both task placement and hard real-time
schedulability constraints. Optimization techniques are
also experimented in order to minimize system dimen-
sions. Lastly, we outline different recommendations for
the design of efficient search strategies. Several bench-
marks from various domains are considered as running
examples throughout the paper.

Introduction
Deficiencies in the design or dimensioning of a critical and
real-time high-performance system can cause fatal failures.
In order to prove that for an entire system, real-time and ar-
chitectural size requirements are met, it is necessary to prove
its dimensioning. A relevant example of correct system di-
mensioning is ensuring that the processing resources are suf-
ficient. This is a huge task as the increasing complexity of
systems involves designs of combinatoric complexity. To
master the complexity of system specification and design,
we consider a proof-based methodology, like TRDF1 as dis-
cussed in (Le Lann 97)(Le Lann 98). TRDF allows trans-
lation of the (incomplete and/or ambiguous) description of
an application problem into a precise specification. To be
acceptable, computer-based systems must come with proofs
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1TRDF is the French acronym of Real-Time Distributed Fault-
Tolerant Computing.

that all the decisions made during the system design satisfy
system specification.

The complexity of target architectures has increased too,
with many functional units incorporated on a single chip, the
placement of tasks onto the set of processors remains a com-
plex problem raising combinatorial explosions. It is neces-
sary to consider simultaneously several interdependent sub-
problems such as task scheduling and placement. Usually
highly combinatoric, each of these problems is characterized
by feasibility constraints and design decisions (scheduling
policy, data allocation strategy, communication protocols).
Therefore, applying a proof-based method requires multiple
formulations for the representation of the global system. The
modelling phase of the method captures the invariants of the
system specification, but also decomposes and simplifies its
design complexity from coarse to fine grain. The designer
has to solve a task placement problem, and must guarantee
real-time schedulability. Evenmore, the designer needs to
optimize the architecture to fit some space requirements or
to optimize system performances.

Our approach relies on Constraint Logic Programming on
finite parts ofN CLP(FD) with all its classical operators
(Van Hentenryck et al. 95). We claim that this language can
solve and possibly optimize the design of complex hard real-
time systems. One area of experimentation for Constraint
Programming techniques has been the automatic data-layout
of High-Performance FORTRAN programs onto parallel
computers, using0− 1 modelling, CPLEX and branch-and-
bound searches (Bixby and al. 94). Using CLP, relevant re-
sults have also demonstrated the efficiency of the approach
for modelling and solving Digital Signal Processing place-
ment problems (Ancourt and al. 97),(Thiele 97). Another
area of investigation has been the engineering of real-time
(multi-processor) applications (Bacik and al. 98),(Guettier
and Hermant 99). For all these examples, it has been neces-
sary to solve the global problem globally using a composite
model.

This paper presents a global approach for solving or opti-
mizing automatically the mapping of real-time tasks onto
multi-processor architectures using CLP. Focusing on the
feasibility conditions of real-time scheduling algorithms,
generic models and search methods are proposed to tackle
the mapping feasibility, as well as the system size opti-



mization. The different modelling steps required to express
tractable feasibility conditions in CLP are detailed for an
exhaustive class of online scheduling policies. It encom-
passes necessary and sufficient feasibility conditions foron-
line scheduling algorithms such as Earliest Deadline First
(EDF), Highest Priority First (HPF), as well as its specializa-
tions, Deadline Monotonic (HPF/DM), and Rate Monotonic
(HPF/RM). In spite of their complexity, we demonstrate that
analytical feasibility conditions can be expressed as equiv-
alent feasibility constraints with CLP. Different composite
search strategies are also proposed, combining load balanc-
ing and priority assignement (Audsley 1991) techniques.
This association of offline solving techniques with online
scheduling solutions is a new approach to the proof-based
design of complex distributed and real-time systems.

Problem Specification
In this section, we specify the problem under consideration
according to the TRDF method (Le Lann 97),(Le Lann 98).
First, system requirement capture is summarised. Require-
ments are modeled in a fairly standard fashion, taking into
account the problem models. Second, we state the major
problem property, i.e. the timeliness property. As a result, it
is possible to meet hard real-time constraints that would not
be satisfied with a single processing element.

Models of System Requirements
In subsequent sections of the paper, demonstrations are per-
formed using the assumptions that follow. System require-
ments define a global design problem that must be broken
down into several sub-problems of lower complexity. Each
sub-problem can be modeled with its own mathematical in-
variants. Finding a set of feasible solutions to a given sub-
problem requires the instantiation of all the variables of the
sub-problem. Relations resulting from this decomposition
correlate model variables. They maintain the consistency of
different local solutions and thus feasibility of the global so-
lution.

Computational Model We assume the synchronous com-
putational model (task durations have known bounds). With-
out loss of generality for the models described in this paper,
we will use a discrete time model:t ∈ N.

Task Model Let τ be the task set to execute. We consider
a level of specification where each taski ∈ τ is represented
by a sequence of steps, each step being mapped onto exactly
one processor. A task has a worst case computation time
∀i, Ci ∈ N which can be constant or variable offline. When
it is variable, upper and lower bounds exist and their values
are known.

External Event Types Models All tasks are ready to exe-
cute whenever requested. Activation demands of a task are
constrained by a periodic or sporadic arrival model (Mok
83).

Periodic Sporadic

The(ai + 1)th activation date of taski is denotedd(ai).
The first activation date of taski corresponds toai = 0.

∀i, ∃φi,0 ∈ N, ∀ai ∈ N, ∀i, ∀j ∈ N, ∃φi,j ∈ N, ∀ai ∈ N

d(ai) = φi,0 + aiTi, d(ai) =

ai
∑

j=0

φi,j + aiTi

The period/minimal inter-arrival time of taski is denoted
Ti ∈ N

∗

The concrete or non-concrete attributes of taski:
Concrete:φi,0 known. {φi,j}j∈N known.
Non-concrete:φi,0 unknown. {φi,j}j∈N unknown.

whereφi,0 is a phase difference/{φi,j}j∈N are phase differ-
ences. The sporadic model is more general than the peri-
odic model (Mok 83) and our approach holds for both arrival
models.

In subsequent sections of the paper, we consider ape-
riodic/sporadic non-concrete traffic τ , which is a fi-
nite set ofn periodic/sporadic non-concrete trafficsτi. A
periodic/sporadic non-concrete trafficτi captures an infi-
nite set of periodic/sporadic concrete trafficsωi. A peri-
odic/sporadic concrete trafficωi is caracterized by its known
activation dates{d(ai)}ai∈N, its worst case computation
timeCi, its period/minimal inter-arrival timeTi, and its rel-
ative deadlineDi. ∀ai ∈ N, d(ai+1) − d(ai) ≥ Ti and
0 ≤ Ci ≤ Min{Ti, Di}. The term traffic is commonly used
in the telecommunication community to refer to a task set.
These two terms can be used indifferently.

Task Placement Model For each taski, we use a coarsed
grain placement form in order to size the task workload ac-
cording to the whole target architecture. At a first glance,
this can be formulated using classical set partitioning for-
mulations.

Architectural Model The architectural model is MIMD
“Multiple Instruction Flow, Multiple Data Flow”, where the
different processors can execute multiple instructions inpar-
allel. The architecture is homogeneous, worst case compu-
tation timeCi does not depend on which processor isi is
placed.

Property
To be feasible, the solution must satisfy the timeliness prop-
erty, under the models described above.

Tasks are assigned timeliness constraints: latest termina-
tion deadline. A solution is said to be feasible if for ev-
ery possible system run, every timeliness constraint is met.
Values of deadlines are dictated by application considera-
tions. A deadline can be expressed as a natural number:
∀i ∈ τ, Di ∈ N

∗

Example of real world specifications
This section presents three realistic specifications extracted
from real world applications discussed in (Tilman et al.
01),(Guettier and al. 01), that are used as on-going exam-
ples throughout this paper. Althought various cost functions
could be investigated, finding a feasible solution on a min-
imal set of processors is considered to be the engineering
cost objective.



Task C(ms) T (ms) D(ms)
insert target 50 250 100
distance eval 100 500 150
pursuit target 150 500 300
suppress target 20 200 500

Figure 1: Example of adetection system.

Task C(ms) T (ms) D(ms)
FDIR 20 100 100
energy manager 100 500 400
camera controler 40 100 100
mmemory controler 400 600 1000
telecom protocol 100 400 200
antena controler 40 100 200
unload protocol 200 400 200

Figure 2: Example of anobservation spacecraft
system.

Detection system: As a simpler example, we propose a
detection system (typical of airborne radars or sonars) that
manages a list of targets. A Digital Signal Processing system
(out of the scope of the example) processes a beamforming
algorithm (Ancourt and al. 97).

Spacecraft system: This system performs some observa-
tions and saves its data on a mass memory (Tilman et al. 01).
Controled remotely from earth, the spacecraft can neverthe-
less perform Fault Detection Isolation and Recovery. Data
can be unloaded or new pictures ordered using a communi-
cation antenae.

UAV Avionic system: It is a typical (although very sim-
plified) core functional architecture (fig. 3) of a Unmanned
Aerial Vehicle (UAV) system (Guettier and al. 01). It per-
forms some observations that are downloaded, following a
predefined mission plan. According to situation awarness,
the mission manager task sends limited corrections to the
speed and altitude controller tasks. It can also send situation
information to a remote operator.

Hard real-time scheduling & mapping models
This section presents the constraint based model of the hard
real-time scheduling and mapping problem. Feasibility con-
straints of scheduling algorithms are extracted from the state
of the art in hard real time computing and modeled using a
CLP(FD) language.

The mapping model, based on a set partitioning formu-
lation is at first defined. A more generic formulation than
well-known uniprocessor scheduling feasibility conditions
is then detailed. These necessary and sufficient constraints
are involving variablesCi, Ti, Di as well as task partition-
ing. The modelling includes Highest Priority First (HPF)
like Deadline Monotonic (DM), Rate Monotonic (RM) as
well as Dynamic Priority classes of scheduling such as Ear-
liest Deadline First (EDF).

In order to improve the problem solving efficiency, sev-
eral decisions in problem representation have to be made. In
the sequel, we explain how the modelling is refined in order
to extract sufficient conditions, used as heuristic constraints.
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Task C(ms) T (ms) D(ms)
attitude control 3 8 8
fuel manager 2 30 20
mission manager 4 20 11
gps update 5 40 11
autoprotection 6 40 16
fault detection 5 20 11
speed controler 2 10 11
gyro acquisition 6 10 15
beam input 4 10 15
com manager 2 15 14

Figure 3: Example of anUAV avionic system.

Furthermore, throughout the modelling, constraints are re-
fined in order to be tractable with CLP capabilities.

Mapping models

The mapping of real-time applications can be decomposed
into task placement, architectural and relational models.Set
partitioning is expressed using0 − 1 formulation and repre-
sents task distribution. The architectural model is then ex-
pressed as a resource constraint. Additional relational state-
ments ensure the global solution consistency.

Task placement as set partitioning We use a0 − 1 for-
mulation to specify whether the processorp is allocated to a
given taski. This model has been widely investigated for the
representation of various combinatorial problems involving
set partitioning (Gondran and Minoux 95).

∀i ∈ τ, ∀p ∈ [0,Pmax), mi
p ∈ {0, 1}

∀i ∈ τ,

Pmax−1
∑

p=0

mi
p = 1 (1)

Statement (1) specifies that a taski is allocated to a single
processorp iff mi

p = 1. Using this formulation, the actual
partitioning may lead to a lower number of busy processors.

Architectural resource constraints The number of busy
processorsP has an upper-bound determined by the con-
stantPmax. It defines the number of processors required
to map the entire task and is given byP = card{p ∈
[0,Pmax)|∃i ∈ τ/mi

p = 1}.



P =

Pmax−1
∑

p=0

max
i∈τ

{mi
p} (2)

Relational Constraints Relational statements between
models are required to retrieve global consistent solutions
and to globally optimize cost functions such as the system
size.

∀i ∈ τ, ∀p ∈ [0,Pmax), Ci(p) = Ci.m
i
p (3)

Modelling feasibility constraints of online
scheduling algorithms
The scheduling algorithms under consideration belong to the
class of online real-time scheduling algorithms. In this class,
there are two subclasses: that of deadline-driven scheduling
algorithms and that of fixed-priority scheduling algorithms.
EDF belongs to the former subclass and dominates any
other scheduling algorithm belonging to the latter subclass,
such as, for instance, Highest Priority First/Deadline Mono-
tonic (HPF/DM) and Highest Priority First/Rate Monotonic
(HPF/RM) (Dertouzos 1974).

This section gives feasibility conditions for EDF and HPF
policies, which allows us to conduct a comparative study in
terms of constraints complexity.

Basic concepts This section defines the basic concepts in-
troduced in (Liu and Layland 73). Further sections extend
the approach and recast feasibility conditions into tractable
constraints for CLP languages.

The workload W (p, t, τ): By definition, the workload
W (p, t, τ) for each processorp is the amount of time that is
needed to run all the tasks whose activation times are in[0, t)
(Baruah et al. 1990b). To give the expression ofW (p, t, τ),
we consider the synchronous concrete trafficω ∈ τ , where
∀i, ∀j ∈ N, φi,j = 0.

W (p, t, τ) =
∑

j∈τ

W (p, t, j) =
∑

j∈τ

⌈

t

Tj

⌉

Cj(p). (4)

A necessary feasibility condition (NC): This well-known
necessary condition can be used as a heuristic to solve the
global problem.

τ is feasible by EDF, HPF⇒ ∀p ∈ [0,Pmax),

n
∑

j=1

Cj(p)

Tj
≤ 1.

(5)
sketch of the proof:

We derive the utilization factorU(p, τ ) from the workload
W (p, t; τ ):

U(p, τ ) = Limt→∞

{

W (p, t;Pp(τ ))

t

}

=

n
∑

j=1

Cj(p)

Tj

.

By definition, the utilization factorU(p, τ ) for processorp is the
fraction of time that is needed to run all the tasks over[0,∞), i.e.,

the limit of W (p, t; τ )/t ast tends to infinity. IfPp(τ ) is feasible
by EDF, thenU(p, τ ) ≤ 100%.

Using exact feasibility conditions for EDF
The EDF policy works as follows (Liu and Layland 73).

At any timet ∈ R
+, if there are pending tasks (i.e., tasks

which have been previously activated but which have not
been fully completed yet), EDF runs the task which has the
earliest absolute deadline. The processor is then said to be
busy. To decide between tasks having the same absolute
deadline, EDF makes use of a tie-breaking rule (e.g., a ar-
bitrary order). If there are no pending tasks, EDF runs no
task. The processor is then said to be idle (see example in
figure 4). In this paper, we consider preemptive versions for
EDF and its associated analytical feasibility conditions.

The processor demandh(p, t, τ):

h(p, t, τ) =

n
∑

j=1

h(p, t, j)

=

n
∑

j∈τ

Max

{

0, 1 +

⌊

t − Dj

Tj

⌋}

Cj(p) (6)

By definition, the processorp demandh(p, t, τ) is the
amount of time that is needed to run all the tasks whose ac-
tivation times and absolute deadlines are in[0, t] (Baruah et
al. 1990b). To give the expression ofh(p, t, τ), we consider
the synchronous concrete trafficω ∈ τ .

A necessary and sufficient feasibility condition (NSC):

τ is feasible by EDF⇔

∀t ∈ R
+, h(p, t, τ) ≤ t; (7)

τ is feasible by EDF⇔ Supt∈R+∗

{

h(p, t, τ)

t

}

≤ 1. (8)

sketch of the proof:
By definition, the processor demandh(p, t, τ ) is the amount of

time that is needed to run all the tasks whose activation times and
absolute deadlines are in[0, t]. τ is feasible by EDF, if and only
if, ∀p ∈ [0, Pmax),∀t ∈ R

+, h(p, t, τ ) ≤ t, i.e., if and only if,
Supt∈R+∗ {h(p, t, τ )/t} ≤ 100%.

Study interval: In order to be operationally satisfied, fea-
sibility constraints cannot be stated onR+∗. Although
the processor busy periodλ (Hermant et al. 96),(Hermant
98) is a candidate interval, the resulting constraints are not
tractable in a CLP model. Instead, the study interval is set to
L = gcm

i∈τ
(Ti) and is preprocessed. Therefore, equation (8)

becomes:

τ is feasible by EDF⇔ Supt∈(0,L)

{

h(p, t, τ)

t

}

≤ 1 (9)



0 50 100 250 300 350!1;1 !1;2
0 50 150!2;1
0 150 300!3;1
0 200 350 370 390 400!4;1 !4;2

U(0, τ ) =
n

∑

i=1

Ci

Ti

= 0.8 (10)

λ =

n
∑

i=1

⌈

λ

Ti

⌉

Ci = 390ms (11)

∀t ∈ [0, 390), h(0, t, τ ) ≤ t (12)

Figure 4: Mapping of thedetection system onto a
single processor

Example of feasible mapping: A feasible mapping of the
detection system onto a single processor can be de-
rived. The utilization factorU(0, τ) is given in (10). Instead
of L, the length of the busy periodλ is used as the study
interval (11). Lastly, the necessary and sufficient feasibil-
ity condition for EDF (12) holds true, illustrated by a feasi-
ble schedule of the synchronous activation scenario (worst
cases) in fig. 4.

Using exact feasibility constraints for HPF At any time
t ∈ R

+, if there are pending tasks (i.e., tasks which have
been previously activated but which have not been fully
completed yet), HPF runs the task which has the highest
priority (Liu and Layland 73). Priorities can be allocated
according to deadlines (said to be deadline monotonic) or
period (also called rate monotonic). The highest priority
correponds respectively to the lower deadline or the lower
period. Priorities can also be computed statically in order
to optimize the execution (Audsley 1991), for example, by
maximizing the workload. As for EDF, we consider a peri-
odic/sporadic non-concrete trafficτ , which is a set ofn peri-
odic/sporadic non-concrete trafficsτi. When a set of tasks is
allocated to the same processor, a priority order is associated
to τ , as follows.

Priorities:

∀i ∈ τ, ∀j ∈ τ/i 6= j, ∃p /

(mp
i = 1) ∧ (mp

j = 1) ⇔ (j ≺ i)∇(i ≺ j) (13)

where∇ the exclusive or.

Response timer(p, t, i, τ): To establish necessary and
sufficient conditions as schedulability constraints for HPF
(Lehoczky 90), (Tindell and al. 94), one has to consider the
worst case response timer(p, t, i, τ) ∈ N associated to task
i and processorp. The task set is feasible, if and only if, for
each taski, at any activationt, the response time meets the
deadlineDi:

τ feasible by HPF⇔

∀p ∈ [0,Pmax), ∀i ∈ τ, ∀t ∈ [0,∞), r(p, t, i, τ) ≤ Di

Workload w(p, t, i, τ): For each task, the response time
can be rewritten using the workloadw(p, a, i, τ) ∈ N, as
follows:

∀i ∈ τ, ∀p ∈ [0,Pmax), ∀t ∈ [0,∞),

r(p, t, i, τ) = w(p, t, i, τ) − t

Let us consider a taski (of priority i). In [0, t], the maxi-
mum number of executions of taski is 1 + ⌊t/Ti⌋. For each
taskj (of lower priorityj ≺ i), in [0, w(p, t, i, τ)), the max-
imum number of executions of taskj is ⌈w(p, t, i, τ)/Tj⌉.
Hence, the workload can be written as follows:

w(p, t, i, τ) =

(

1 +

⌊

t

Ti

⌋)

Ci+
∑

j∈τ/j≺i

⌈

w(p, t, i, τ)

Tj

⌉

Cj(p)

(14)

The resulting necessary and sufficient condition: By re-
placingr(p, t, i, τ), it follows that:

τ feasible by HPF⇔ ∀i ∈ τ, ∀t ∈ [0,∞), ∀p ∈ [0,Pmax),

w(p, t, i, τ) ≤ t + Di (15)

This set of equations converges to a fixed point, which can
be solved using the fixed point semantics of CLP languages.
A tractable interval for activations[0, t) must be specified
for implementing the constraint using a CLP language. First,
a maximal study interval can be specified using the greater
common multiple of the periods/sporadicities. Second, for
each task, activations can be formulated using the associated
period/sporadicity according to the worst case analysis. This
leads to:

∀i ∈ τ, t ∈ [0, lcm
j∈τ

(Tj))

∀i ∈ τ, ∀t ∈ [0, lcm
j∈τ

(Tj)), ∃qi | t = qi.Ti ⇒ (16)

∀i ∈ τ, ∀qi ∈ [0, lcm
j∈τ

(Tj)/Ti) (17)

As for EDF (in eq. 9), thelcm constraint, which has
not received efficient implementation yet, is preprocessed.
Here again, upper-approximation may be found in order to
keep the global problem tractable by CLP. Using constraints
(16,17) constraint (14) can be simplified:

w(p, qi, i, τ) = (1 + qi)Ci +
∑

j∈τ/j≺i

⌈

w(p, qi, i, τ)

Tj

⌉

Cj(p)

(18)
such that the NSC (15) becomes:



Processor 0:

0 50 100 250 300 350!1;1 !1;2
0 50 150!2;1

Processor 1:

0 150 300!3;1
0 150 170 200 220 400!4;1 !4;2

U(t, 0, τ ) = U(t, 1, τ ) = 40 (21)

λ0 = 150 ms andλ1 = 170 ms (22)

Figure 5: Mapping of thedetection system using
HPF/DM or HPF/RM and HPF/DM onto two processors.

τ feasible by HPF⇔

∀i ∈ τ, ∀qi ∈ [0, lcm
j∈τ

(Tj)[, ∀p ∈ [0,Pmax),

w(p, qi, i, τ) ≤ qi.Ti + Di (19)

Lastly, the priority order (13) may not be instantiated.
Therefore, the formulation (18) leads to the enumeration
of all priority order without the consideration of constraint
propagation. A more efficient approach is to model the pri-
ority order using a permutation matrixP , such that state-
ment (18)⇔ (20):

P ∈ {0, 1}card(τ)×card(τ)

~C′ = P.~C, ~T ′ = P.~T , ~w′(p, qi, τ) = P.~w(p, qi, τ)

w′(p, qi, i, τ) = (1 + qi)C
′

i +
∑

j∈[0,i)

⌈

w′(p, qi, i, τ)

T ′

j

⌉

C′

j(p) (20)

Example of feasible mapping: An optimal mapping (in
terms of the number of processors) of thedetection
system can be given on two processors, using a HPF
policy (fig. 5). It considers tasksinsert target
and distance eval placed onto processor0, while
tasks pursuit target and suppress target are
placed onto processor1. For processor0, task
insert target is assigned the highest priority, while
task distance eval is assigned the lowest. This as-
signment corresponds to the Deadline Monotonic (DM) or
the Rate Monotonic (RM) fixed priority assignment. For
processor1, taskpursuit target is assigned the high-
est priority, while tasksuppres target is assigned the
lowest. This assignment corresponds to the Deadline Mono-
tonic fixed priority assignment.

This placement defined can also be computed automati-
cally using the CLP models implementation.

Automatic Solving Using CLP Language
Several problems can be solved using models presented.
Specific periods, deadlines, response or computation times
that would be related to an applicative function (such that
the worst case durations of the UAV control tasks) can be
solved. However, within the scope of this paper, the focus
is on a non-functional requirement: the minimal number of
required processorsP.

Search strategies

This section presents the main design concepts for search
strategies dedicated to the scheduling and mapping problem
under consideration.

Elementary search The elementary search strategy is
based on thelabeling and Branch & Bound predicates,
provided in most of CLP implementations (Carlsson et al.
97). Even when problem models are tractable, these basic
strategies are too weak to cope with the largest problem in-
stances.

Load balancing strategies So called load balancing
heuristics can be introduced as static heuristics, or as a dy-
namic search strategy. These heuristics and strategies canbe
used for both HPF and EDF scheduling policies.

Static heuristic: This strategy is similar to elementary
search, but disjunctive constraints on the utilization factor
are added in order to statically decompose the search space.
This strategy structures the search space in favour of as-
signements that do not under-utilize processors (also called
no starvation heuristic).

Dynamic balancing search strategy: Instead of using
standardlabeling predicates, this strategy reorders dy-
namically2 the set of variables to explore. Each time a place-
ment variablemj

q is successfully instantiated (which indi-
cates that taskj is placed on processorq), a set of variables
Mp = {m1

p . . .mn
p} is selected according to the least uti-

lized processorp. The selection function tests the minimal
bounds of constraint variables{U(k, τ)}Pmax

0 . Then, the
strategy attempts to instantiate one variable of the setMp.
If one variable can be successfully instantiated, the strategy
starts over until all the tasks are placed. Otherwise, it back-
tracks and another processor is selected according to the in-
creasing order of utilization factors.

Uniprocessor optimal priority assignment heuristic:
The last search strategy to be investigated relies on the
uniprocessor optimal priority assignment (PA) (Audsley
1991). Using this method, only the problems involving HPF
scheduling policies can be improved. Far from being opti-
mal on multi-processor problems, this PA method can nev-
ertheless be used as a heuristic. The search strategy first

2Here, the term ’dynamic’ does not mean that the strategy is
performed online, but that the construction of the search tree is
dynamic (e.g. during the search itself).



enumerates the set of placement variables, for each proces-
sor and each taskmi

p. Then, for each processor, the opti-
mal PA is performed. It consists of instantiating tasks of a
highest priority first, without backtracking on these assign-
ments (Audsley 1991). Still complete, this technique obvi-
ously simplifies the search complexity. The PA heuristic can
be used in combination with both static and dynamic bal-
ancing strategies but may conflicts with the load balancing
strategies.

Experiments
Six combinations of strategies (figure 6) and scheduling
policies have been experimented on 522 problem instances,
optimising for the number of processors. The elementary
strategy without any heuristic does not give meaningful re-
sults in reasonable time, until the static load heuristic is
added.

Problem generation method
The experimentation method relies on the real world exam-
ples. A problem generation technique operates by iteratively
decreasing of 5% the task deadlines until problem instances
becomes infeasible for the maximum number of processors.
This way, problem instances become more difficult by de-
creasing the global laxity of the hard real-time constraints.
Experiments are performed on a 1Ghz Intel III processor,
with 256 MBytes of main memory and WindowsXP Pro and
SICStus Prolog 3.9.0, using finite domain constraint library
(Carlsson et al. 97).

Global results
The subset of experiments under consideration (figure 6) en-
ables the comparison of the different policies (namely EDF
and HPF) for the mapping problem, as well as the various
strategies proposed. Figure (figure 6) includes data gathered
from the three benchmarks. On this figure, the columnbest
solutionsis the number of instances for which at least one
solution is retrieved. The columnproof of completenessis
the number of instances for which the problem is solved op-
timally or for which it can be proved that no feasible solution
exist.

policy, strategy number of instances best solution proofs of completeness

EDF, static load 87 82 62
HPF, static load 87 65 26
HPF, static load, PA 87 76 39
EDF, dynamic load 87 86 66
HPF, dynamic load 87 66 26
HPF, dynamic load, PA 87 57 41

Figure 6: Experiments under consideration

At first glance, experiments suggest that solving the map-
ping problem with an EDF scheduling policy is easier than
with its HPF equivalent. Globally, the priority assignment
heuristic improves the search efficiency (for HPF cases),
when the static load heuristic is activated. For HPF cases,
and without the priority assignment heuristic, the strategies
fail to prove completeness for any of the problem instances
in benchmarkspacecraft system anduav avionic

(completeness can be proved only for the 26 easy instances
of thedetection system benchmark).

When considering the EDF policy, the number of prob-
lems solved is 5% better (6% better for the proofs of com-
pleteness) by replacing the static load balancing heuristic
with a dynamic search. This is also the case for the HPF
policy using the priority assignments heuristic, but only for
the proof of completeness (41 versus 39 instances). As a re-
sult of the conflicting strategies, the dynamic load strategy
combined with the PA heuristic gives a reduced performance
on the number of problems solved (57 versus 66 instances).

Evaluation of solutions

Figure 7 compares the number of processors found for the
two non-trivial benchmarks (spacecraft system and
uav avionic), when decreasing the global laxity. Using
the EDF policy, search strategies find a smaller number of
processors. Furthermore, using this policy, more problems
can be (optimally) solved in the time limit imposed. By con-
vention, when the strategy fails to give any feasible solution
or to prove that the problem instance is not feasible, a ver-
tical line is drawn. As for the global results, the priority
assignment heuristic improves the costs, except for the con-
flicting load balancing strategy.

Strategy performances

For the purpose of the experiments, a time-out is imposed
on the different runs. Therefore, experiments that success-
fully yield to a proof of optimality (mainly on benchmarks
detection system and spacecraft system) are
separated from experiments that lead to optimized solu-
tions, without guarantee of optimality (mainly on bench-
marksspacecraft system anduav avionic).

Time for proving optimality Figure 8 gives the different
completion times for benchmarkspacecraft system
to prove solution optimality according to the dif-
ferent search strategies. Concerning the benchmark
detection system, the proof of optimality can be per-
formed for all the experiments with2 and 4 processors.
However, due to the little differences between solving du-
ration and the small problem size, the curves are not repre-
sented in this paper.

With the EDF policy, proof of completeness can
be performed on all the problem instances of the
spacecraft system in figure 8, and similarly on parts
of the problem instances of theuav avionic. In gen-
eral, the time for proving the optimality is not modi-
fied when replacing the load balancing heuristic with the
dynamic load balancing strategy. For the benchmark
spacecraft system, and using the priority assignment
heuristic, proofs of optimality can be performed for a subset
of instances. The dynamic load balancing strategy improves
the solving time only for two instances. Without the priority
assignement heuristic, strategies fail to prove completeness
for the HPF scheduling policy in the time limit (7 seconds).

Time for finding an optimized solution Figure 9 gives
the completion times for benchmarkuav avionic to find
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Figure 7: Theuav avionic example (6 processors): com-
parison of the minimal number of processors with different
search strategies

an optimized solution. The time out range is 20 seconds.
Again by convention, a vertical line is drawn when the solv-
ing strategy fails to produce any feasible solution or to prove
that the problem instance is not feasible. It is not obvious
that the dynamic load balancing strategy improves the solv-
ing duration on 9-a. Furthermore, as shown on figure 9-
b, the conflict of this strategy with the priority assignment
heuristic gives a counter-performance (instances under 200
of laxity cannot be solved). In contrast, for the EDF pol-
icy, strategies are improved with the load balancing heuris-
tic, even for the set of non-feasible instances (as shown on
figures 9-a and 9-b).

Conclusions and Further Work
This paper demonstrates that the necessary and sufficient
conditions can be preserved while modelling the feasibil-
ity of HPF and EDF preemptive scheduling policies using
a CLP language. From a Constraint Programming point
of view, this represents an interesting alternative to the
fully static approach generally considered, where preemp-
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Figure 8: Time to complete proof of optimality on the
spacecraft system example (4 processors)

tive scheduling is solved completely offline. The constraint-
based modelling described in this paper has a larger applica-
tive impact, as many real-time operating systems for embed-
ded applications make use of HPF policies. Furthermore,
using these constraint-based models, various mapping prob-
lems can be solved. On realistic benchmarks, experiments
have shown that proofs of completeness can be found in rea-
sonable time.

The paper illustrates how to support the engineering of
distributed real-time systems using a proof-based method.
As a matter of fact, a generic heuristic, such as load bal-
ancing performs better with EDF. With other HPF policies,
the benefit of this heuristic is not clear, even using dynamic
search techniques that are generally recognized as strong
strategies. It is very difficult to conclude on the gain of the
priority assignment heuristic, although dedicated to the HPF
scheduling policy.

Most importantly, the paper shows for real world exam-
ples that the design of distributed real-time architectures is
simpler using EDF policies. On various problem instances
with the EDF policies, strategies have been able to prove
search completeness. As a result, the solution optimality
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Figure 9: Theuav avionic example (6 processors): time
to retrieve optimized solutions using the different strategies

or the non feasibility of these problem instances can be
decided, proven and guaranteed. For the same instances,
strategies fail to prove search completeness using HPF poli-
cies. This paper is a first step towards the promising combi-
nation of offline and online multi-processor scheduling tech-
niques. The modelling of communication protocols shall be
part of further works.
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