Automatic Data Mapping of Signal Processing
Applications*

Corinne Ancourt? & Denis Barthou?& Christophe Guettier':?> & Francois
Irigoin? & Bertrand Jeannet! & Jean Jourdan!' & Juliette Mattiolil

! LCR, Thomson-CSF, Domaine de Corbeville, F-91404 ORSAY cEDEX, France.
2 CRI, ENSMP, 35 rue Saint-Honoré, F-77305 Fontainebleau CEDEX, France.

Abstract. This paper presents a technique to map automatically a
complete digital signal processing (DSP) application onto a parallel ma-
chine with distributed memory. Unlike other applications where coarse
or medium grain scheduling techniques can be used, DSP applications in-
tegrate several thousand of tasks and hence necessitate fine grain consid-
erations. Moreover finding an effective mapping imperatively require to
take into account both architectural resources constraints and real time
constraints. The main contribution of this paper is to show how it is pos-
sible to handle and to solve data partitioning, and fine-grain scheduling
under the above operational constraints using Concurrent Constraints
Logic Programming languages (CCLP). Our concurrent resolution tech-
nique undertaking linear and non linear constraints takes advantage of
the special features of signal processing applications and provides a so-
lution equivalent to a manual solution for the representative Panoramic
Analysis (PA) application.

Keywords: parallelizing compiler, scheduling, constraint logic programming

Introduction

The post World War II era has resulted in the trend of using Digital Signal
Processing (DSP) technologies for both military and civilian applications. The
growing requirements for sophisticated algorithms, especially those used for 3-D
applicative domains, lead to process in real time large multi-dimensional arrays
of data. These applications are executed on parallel computers, that offer enough
computing power [25].

The mapping of DSP applications onto parallel machines raises new prob-
lems. The real time and target machine constraints are imperative. The solution
must fit the available hardware: the local memory, the number of processors,
the processor communications. The application latency must meet the real time
requirements. This necessitates fine-grain optimizations. Combining both kinds
of constraints is still out of the scope of automation and requires deep human
skills.

* Submitted to ASAP’97

This paper presents a new technique to map automatically DSP application,
represented by a sequence of loop nests, onto a SPMD distributed memory ma-
chine. This technique is based on formalizations of the architectural, applicative
and mapping models by constraints. The result is (1) a fine grain affine sched-
ule of computations, (2) their distribution onto processors and (3) a memory
allocation. Computations are distributed in a block-cyclic way on processors.
Communications are overlapped with computations when possible. The mem-
ory model is precise: Only the amount of memory useful to the computations is
allocated.

The general mapping problem (data and computation onto processors) has
been proved to be NP-complete [36, 37]. While data dependence constraints can
be translated into linear inequations and then solved by classical linear pro-
gramming algorithms, resource constraints require non linear expressions. Solv-
ing directly both constraints is still out of the scope of any general algorithms
and necessitates the combination of integer programming and search [24]. Fol-
lowing the same idea of combining constraints solving and nondeterminism, our
technique uses a CCLP [19, 53] approach. Unlike conventional constraint solvers
based on black box algorithms, CCLP languages use an incomplete constraint
solvers over a finite domains algebra. The two main advantages of using such
algorithm are first to enhance compositionality features [52, 31] and secondly to
offer basic control structures for expressing new constraints [52].

Our approach takes as input the specification of different models such as: the
target machine, the communication cost, the application, the partitioning, the
data alignment, the memory allocation and the scheduling models. Then, the
CCLP assets enable to handle linear and non linear expressions and to yield,
through the concurrent propagation of the constraints over all the models to so-
lutions, satisfying the global problem. The solution outlook depends on multiple
criteria as memory allocation or latency.

The article is organized as follows. Firstly, the characteristics of the target
machine and DSP applications are presented. Secondly, our constraint formal-
ization of the problem is exposed: Especially, the partitioning, scheduling and
memory models are detailed. Thirdly, the concurrent resolution programming
technique is presented, followed by our prototype results. Finally, a comparison
with other approaches is described before concluding.

1 Architectural and Applicative features

This section presents an overview of the architectural and application features
that characterize our general mapping problem formulation.

1.1 Architectural features

The target machine is an abstract SPMD distributed memory machine. The
mapping is constrained by machine resources:

Number of processors. The application is mapped on all processors. How-
ever, criteria like memory allocation or communication minimization may
enforce the use of fewer processors.

Local memory size. Because there is no global memory, the amount of mem-
ory necessary to execute a set of computations, mapped onto a processor at
a given moment, must fit the available processor memory.

Processor rate. The latency criteria (amount of time between one input and
the corresponding output) can be fixed to a maximum value.

Overlap of computations and communications. The partitioning model takes
advantage of this property to overlap communications with computations.

1.2 Applicative features

In this section the DSP applicative features are described. These features have
been investigated for several years at Thomson-CSF by A. Demeure.

The application is a sequence of loop nests in a single-assignment form
It describes an acyclic graph of tasks. Each loop nest includes a procedure
call that reads one or several multidimensional data arrays and updates one
different array. Array accesses are affine functions of loop indices with even-
tual modulo. Figure 1 presents a global view of PA application [8]. Figure 2
details the first PA loop nest.

Parallelism. Since the application is in a single-assignment form, each loop
nest is full-parallel. Furthermore, the loops are perfectly nested.

Procedures can be seen as black boxes where computational dependencies are
encapsulated. Procedures are DSP library calls, such as Fast Fourier Trans-
form. Our approach schedules the application at this procedural level.

Arrays have one infinite dimension, due to the real time constraint. The
computational recurrence extraction from the application puts forward a
cyclic schedule of a finite amount of computations. Then, classical paral-
lelization techniques can be used.

DSP applications manipulate array references that can be represented by
Read and Write regions [50, 12]. Read and Write regions represent, with affine
constraints [13], the set of array elements read and written by the procedure.
Figure 2 gives the FFT read and write regions. As procedures are generally DSP
library calls, these regions should be allocated fully in the local memory during
the procedure computation.

2 Constraint Formalization

Our technique uses a multi-model approach [32] to describe the general mapping
problem. Due to space limitation, only the partitioning, scheduling and memory
models are presented here. But the communication, latency, architectural and
applicative models obviously influence the resolution.

doall r,c
call FFT(r,c)
enddo

doall r,f,v do r=0,infinity

call BeamForming(r,f,v) do c=0,511
enddo ¢ Read Region:
doall r,f,v
c SENSOR(c,512%r:512%r+511)
call Energy(r,f,v) . .
enddo ¢ Write Region:
c TABFFT(c,0:255,r)

doall r,v

call ShortIntegration(r,v)
enddo
doall r,v

call AzimutStabilization(r,v)

call FFTDbl (SENSOR(c,512%r:512%r+511),
TABFFT(c,0:255,r))

enddo eiggio
doall r,v
call LongIntegration(r,v)
enddo Fig. 2. FFT Loop nest

Fig. 1. Panoramic Analysis application

2.1 Partitioning Model

The partitioning model is designed to map computations onto the target ma-
chine. Since DSP applications are sequences of parallel loop nests, the partition-
ing problem results in loop nest by loop nest partitioning.

The multidimensional iteration domain (I) is partitioned, and computations are
not replicated:

I= U Part;, Vj, 1<j#i<n, Partiﬂpartj =

i=1

The application parallelism degree, memory location requirement and time schedul-
ing parameters are controlled by the partitioning. The iteration domain is de-
composed over 3 vector parameters: z,y, z. Block, cyclic and block-cyclic distri-
butions are possible.

t=LPz+Ly+=z
Viel, Vz,0< L7'2<1, Vy,0< P ly<l1
det(L) #0, det(P) #0

P and L are diagonal square integer matrices. Except for the infinite dimension,
the 3 parameters can be assigned independently to Processor p, Cyclic recurrence
c or Local memory [. The finite resource constraints imply: x = ¢ for the infinite
dimension. The case where (z,y,2) = (c,p,l) implies that max(l) = [], Li; is
the number of local iterations executed by one processor at each cycle ¢ (each
local iteration execute a procedure call). max(p) = []; P; gives the maximum

number of processors and max(c) the maximum number of synchronizations
(cycles) necessary for the loop nest completion.

Due to DSP application features, the array access functions use at most per
array dimension one external loop index and one internal loop index which scans
the read or write region. Since read and write regions are not partitionable, only
the external loop nest is partitioned. So, partitioning matrices are diagonal (with
an eventual permutation). Figure 4 presents the PA loop nest partitioning. It
expresses that 1 iteration r (Lq1) and 64 (Ls») iterations h (see Figures 1,2) are
mapped on each of the 8 (Py; % Pys) processors.

2.2 Scheduling Model

The scheduling model is designed to associate to each computational block a
logical execution event on a processor. The resulting schedule can be viewed as
a succession of loop transformations. In general, it is not possible to find auto-
matically the transformation set to apply such that the final schedule is optimal.
So, the affine scheduling approach, used in systolic arrays and parallelization
techniques [23, 22, 15, 16, 17], is chosen and applied to our context.

The partitioning model states that elementary computations having to be
scheduled (called block hereafter) are the set of L pipelined local iterations
mapped onto p at cycle c¢. Since the programming model is SPMD, p does not
need to appear in the schedule formulation. Thus, it only depends on vector ¢
which fully describes the block of [iterations to perform. We choose the affine
schedule class of events to search as:

d*(c*) = N(a* - + 8% + &

Variables are indexed by the loop nest number k. d¥ is the scheduling function
of the kt*-loop nest. a* and B* are the scheduling affine parameters. o is a line
vector, and ¥ is scalar. N is the number of loop nests. It is used in the formulae
with the offset +k in order to avoid the execution at the same date of two
computations belonging to different loop nests.

In the same way, two computational blocks of a single loop nest cannot be
executed at the same date. Let ¢} and ¢§ with i < j be two cyclic components
of the partitioned loop nest N*. Then, the execution period of Cycle ¢¥ must
be greater than the execution time of all cycles c;?. Hence, Constraints: af >
disi a;? max(c;?) with o > 1 must be verified.

As an example of additional constraints that link the partitioning and schedul-
ing models, the data flow dependencies express that a piece of data of loop nest
N7 cannot be read before being updated by N™. These dependencies between
two cycles ¢ of loop nest N and ¢" of N imply that:

Y(c®,e") Dependence(c?’,c”) = d¥(c?) +1 < d"(c") (1)

d¥ (respectively d") is the scheduling associated to N” (resp. NV).

Note that these dependencies are computed between iterations of different
loop nests. Data flow dependencies are approximated by their convex hull rep-
resentation. However, this approximation lets us to obtain the same set of valid
schedules as with the exact representation without any loss. Due to DSP appli-
cation characteristics, this representation can remain symbolic. This improves
the constraints propagation, since no costly algorithm is needed to solve the
dependence test.

2.3 Memory model

The memory model ensures the application executability under a memory con-
straint. A capacitive memory model is used. It evaluates the memory required
for each computational block mapped onto a processor by analyzing the data
dependencies. An allocation function can be extracted straightforwardly from
the memory allocation result when the schedule is known after the optimization
phase.

The number of data blocks needed to execute the computational block is com-
puted. Due to the partitioning model all computational blocks have the same
simple structure and the same size. Data dependencies are used to determine the
data block life time. A data block is alive from its creation date (corresponding
to its allocation) to its last use date. For each computational block, the schedule
and data dependencies give the maximum life time of a data block and the num-
ber of data block creations during one cycle. This gives the required memory
capacity per computational block and cycle. The addition of the different com-
putational block memory requirements give the amount of memory necessary to
the complete application execution.

The memory is organized in segments of identical data blocks, one per loop
nest. This eliminates the problems of memory fragmentation and the eventual
need of block relocation. Data duplications due to input sets of references over-
lap between successive iterations are eliminated by using partial data block de-
compositions. Only new partial data blocks are kept and fused to others. This
refinement is powerful enough to handle any multidimensional read overlaps and
proved very efficient on the studied DSP applications.

3 Resolution

Constraint logic programming is a generalization of logic programming where
unification is replaced by constraint solving over several computation domains.
These domains include linear rational arithmetics, boolean algebra, Presburger
arithmetics and finite domains [20]. More recently the introduction of the notion
of constraint entailment, stemming from the Ask € Tell paradigm of concurrent
programming [46], enhanced the CCLP framework with synchronism mecha-
nisms. This new class of CCLP (see fig. 3) languages [42, 52] offers control struc-
tures enabling in one hand a better interleaving of the goals of several models
and on another hand a new way to define non-primitive constraints.

Tell: Satisfaction mechanism

P, Th(S) E ()¢
Ask: Entailment mechanism
P, Th(S) E (V)(o = ¢)

where P is a CCLP program, Th(S) a theory of the S algebra, o a guard and ¢ a
constraint.

CCLP program: Set of logic rules of the form {4 <+ a ¢ |A1,..., Ar}

where a, c et {A;} represent respectively a set of constraints of type ask, of constraints
of type tell and logical atoms.

Fig. 3. CCLP programs and its two basic mechanisms

The cardinality operator #(I,u,[c1, ..., ¢,) [51], the constructive disjunction
operator s/(ci, ..., cn) [31], the entailment and the conditional propagation op-
erators are some examples of new connectives of CCLP languages. From an
operational standpoint, they are based on constraint solving, constraint entail-
ment and arithmetic reasoning. Going in deeper details on CCLP is out of the
scope of this paper but we have used these new capabilities to extend our CCLP
languages Meta(F) [11] in order to solve efficiently polynomial constraints over
finite domain variables.

Thanks to their unique combination of constraint-solving, nondeterminism,
and relational form, CCLP languages have been shown to be very effective in
solving complex and heterogeneous problems [53, 30] comparable in efficiency to
specialized algorithms. In the two next sections we show how we can handle and
solve our mapping problem using such kind of new language.

3.1 How does CCLP handle our global mapping problem ?

The mapping models such as partitioning and scheduling are represented with
mathematical variables and affine constraints. Non-linear constraints link the dif-
ferent models and generally are composed with complex and polynomial terms.
For example, constraint (2) links partitioning and architecture models. The num-
ber of processors required by the partitioning must be smaller than the number
of processors available.

NumberO f Processors > maxy (I, (Plkl)) (2)

The latency, resources and data-flow dependencies constraints (1) are global
constraints.

The effective CCLP expressions of the global mapping problem has required
an in-depth collaboration between CCLP and Parallelism specialists. The fine
grain models, issued from parallelization techniques, induce a CCLP model
mostly based on the expression of sets of procedure calls, data blocks and depen-
dency relationships. Those sets are represented as intension rather than extension
models.

In some cases, this task was impossible to perform directly and the proposed
models have to be recasted in a set of expressible constraints representing an
approximation of the model. For instance, the dependency relationships between
blocks of computation cannot be stated in the original constraint (1) due to the
V(c*,c"). The constraint has been implemented as constraint (3):

v(esses) d¥(eg) +1<d’(cp) (3)
where (c¥,ch) are the vertex components of the convex hull of the depen-

dencies, that have been computed symbolically. Hence, the scope of this V is
restricted to the number of vertices.

3.2 How does CCLP solve our global mapping problem ?

While storing the different constraints, the CCLP system builds a solution-space
on a model-per-model basis. Each model solution space is pruned when con-
straints are propagated from other models. Once all models have been built into
the system, non-linear constraints linking the different models still have to be
met. Solutions must be looked for in a resulting overall search space using a
specific global search.

This search relies (1) on the semantic of the variables of each model and
their importance w.r.t. other models and (2) the goal to achieve (i.e. resource
minimization under latency constraint, latency minimization under resource con-
straint).Each variable takes part in a global cross-model composite solving, such
that only relevant information is exchanged between models. The global search
looks for partial solutions in the different concurrent models. For instance, the
set of scheduling variables (a;, 3;) and partitioning matrices P;, L; are partially
instantiated by inter-model constraints during the resolution. Model-specific or
more global heuristics are used to improve the resolution:e.g. schedule choices
are driven by computing the shortest path in the data-flow graph.

Based over models semantic and specific heuristics, the global mapping prob-
lems is solved through CCLP using complex composition schemes.

If dedicated algorithms are used, the composition of the different functions
only is possible by sequential solving according to the functional programming
paradigm. It restricts the composition facilities and has a too high complexity.
Traditional generic solvers, as Simplex, are designed to solve only linear con-
straints in a convex rational context. The Simplex category algorithms does not
support models cooperation.

Integer programming allows to recast complex non-linear constraints using
boolean variables. Therefore, links between models are represented using boolean
variables which restricts partial information exchanges between models.

4 Results

This section illustrates our prototype results. The user specifies the target ma-
chine and the option criteria. In this example, the optimizing cost function is the

memory size minimization. The target machine has 8 processors. The latency
constraint is set to 4.10® processor clock cycles and the memory is unbounded.
Figure 4 describes the partitioning and schedule of PA. The loop nest parallelism
and locality are expressed with the diagonal matrices P and L .

4.1 Partitioning

The partitioning characteristics follow. (1) Only finite dimensions are mapped
onto the 8 processors. This solution satisfies the latency constraints. (2) The
write region of the second loop nest is identical to the read region of the third loop
nest. So the system fuses these loop nests in order to reduce memory allocation.
(3) The access analysis of the second and third loop nests presents read region
overlaps between successive iteration execution. This overlap is detected. The
system parallelizes according to another dimension to avoid data replication.

Energy

Partitionning | FFT |Beam Forming,|BroadBand|Sht Integ| Azimut|Long Integ

‘ 10 10 10 10
Parallelism, P = () (0 8) (0 8) <0 8>

100 10
010 08
008

(o) [(o16)] (o3s)

100
Locality, L = <(1) 604> (0 128 0 > <(1) 106>
0 0 25

Energy

Scheduling FFT |Beam Forming,|BroadBand|Sht Integ| Azimut|Long Integ

UEGRIGHGHS

16 0 1 2 45 46 383

Fig. 4. Partitioning and Scheduling matrices for Panoramic Analysis

4.2 Schedule

According to the different partitions, only the
time dimension is globally scheduled. From the

. . . do ili=0,infinit
« and S scheduling parameters in Figure 4, the ° 111=0,infinity

schedule can be expressed using the regular ex- do lSE,FO’?
. do ibb=0,7

pression: .

FFT (ibb)
((FFT,[BF, E), BB)S, ST, SA)8, LI)® BeamFormingEnergy (ibb)

BroadBand (ibb)

Computational dependencies between itera- enddo

tions are satisfied. The system provides a fine ShortInteg(isa)

grain schedule at the procedural level using the StabAzimut (isa)

dependence graph shortest-path. This enables enddo

the use of data as soon as possible, avoids buffer =~ LongInteg(ili)
allocations, and produces output results at the enddo

earliest. On the right hand side, the correspond-

ing loop nest is represented.

Eight iterations of Tasks FFT,BF-E,BB (executed every ai = 6 steps) are
performed before one iteration of SI,SA (executed every 48 = 6*8 steps). The
last task LongInteg cannot be executed before 8 iterations of the precedent ones.
So it is executed every 384 (=8*48) steps.

4.3 Comparison with manual mappings

Manual mappings of DSP applications are performed in different ways. In gen-
eral, user-friendly interfaces provided by manufacturers offer some help for coarse
grain parallelism. The application is scheduled at the task level and not at the
procedural level. Thus, load balancing is more difficult to obtain.

While it is hard for a human being to instantiate the different models sat-
isfying all constraints, we have compared our solution to two different manual
solutions. The first one is based on loop transformation techniques. The second
one uses the maximization of the processor usage as only economic function.
Our result is equivalent to the one suggested by parallelization techniques. It is
better than the second one which requires more memory allocation.

4.4 Towards global optimization

Between two successive solutions, the system takes important decisions to opti-
mize the mapping. The optimization trace is shown in Figure 5.

The first solution is obtained in a few minutes while this optimization is
completed in ten minutes on a SPARC-10 Workstation. These times have to be
compared with human being inquiries to comprehend and map the application.

Row 0 represents the original set of constraints: a large

Memory Optimization

initial memory size, 8 processors, and a quite restricted
latency. Solution 1 gives a bad partitioning of the fused

sol. | Nb |Memory|Latency
numb. |proc.| Kwords| Mcycl.

loop nests Beam Forming-Energy, and produces an allo-

cation with data replication. Solutions 2 and 3 are mixed: 0 8 | 10000.0

parallelism is set on different dimensions. Solution 4 maps ; 2 1323?
parallelism on the appropriated dimension, thus mini- 3 3 907'3
mizes data replication. Finally, the system finds that tak- 4 3 832.1
ing 4 processors still satisfy the latency constraint and 5 4 832:0

400
175
175
175
175
350

reduces memory cost.

Fig. 5. Optimizing the memory size

5 Related Work

Mapping applications onto parallel machines addresses issues such as scheduling
[10], parallelization [1], loop transformations [29, 4, 38], parallel languages [35, 28,
3], integer linear programming and machine architecture. A lot of work has been
done to optimize a few criteria such as data and/or computation distribution
[40, 21, 34, 7, 43], parallelism detection, minimization of communications [18, 2,
41, 5], processor network usage. This section focuses on the most relevant work.

Although manual loop transformation techniques are attractive and give good
results, it is not possible to find automatically the transformation set to apply
for obtaining the optimal schedule [33, 9]. However restructuring the application
such that the parallelism and data locality are maximized is yet a relevant ob-
jective. Many studies [9, 41, 48] present interesting approaches. Thereafter, the
compiler is in charge of mapping physically the optimized application of the tar-
get machine. Compared to our approach, there is no real time and architectural
constraints (number of processors and memory resources) to take into account
during the parallelization phase.

Similar techniques are used in systolic arrays [16, 17, 14] and parallelization
[23, 22, 26] communities to compute affine schedules. In the systolic community,
these techniques are applied on a single loop nest with complex internal depen-
dencies. The other approaches dealing with complete applications, do not have
the same architectural and application constraints. The parallelism grain is at
the instruction level, there is no real time constraint and the target machine is
generally virtual.

DSP application features are taken into account in [45]. This approach is
based on task fusion, but for a sequential result. Mapping statically DSP appli-
cation with specific signal requirements [27, 49] have been widely investigated.
The representative Ptolemy framework [39, 47, 44] brings some solution but
at a coarse grain level. Most of the resolution schemes are based on dedicated
algorithms [6].

Our approach is the first one to propose an optimal affine schedule of a
complete application with a fine grain parallelism (at the procedural level) and
its mapping onto a architecture under resource and real time constraints.

Conclusion

A technique to map automatically DSP applications onto distributed memory
machines has been introduced in this paper. It uses a multi-model approach to
describe the general mapping problem and a concurrent resolution framework
based on the Constraint Logic Programming. Even if the presented model con-
straints are linear, our system comes to terms with non-linear constraints.

Our experiences on DSP benchmark show that our prototype takes into ac-
count, all architectural and applicative parameters. Sequential, pipelined and
parallel schedules are generated depending on the applications. Comparisons
with manual solutions proves that our approach may provide interesting, indeed
better, solutions.

Future work focuses on developing strategies to speed-up the solution enu-
meration and on extending the set of applications automatically proceed.

Acknowledgments

We wish to give special thanks to F. Coelho for his constructive remarks and crit-
ical reading of this paper. We also thanks T. Brizard, P. Legal and B. Marchand
for their continuous support.

References

1. J.R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491-542,
October 1987.

2. J.M. Anderson and M.S. Lam. Global optimizations for parallelism and locality on
scalable parallel machines. In SIGPLAN Conf on Programming Language Design
and Implementation, pages 112-125, Albuquerque, NM, June 1993. ACM Press.

3. Francoise André, J.-L. Pazat, and Henry Thomas. Pandore: a system to manage
data distribution. In Int. Conf. on Supercomputing, pages 380-388, June 1990.

4. U. Banerjee. Unimodular transformations of do loops. Technical Report CSRD
Rpt. No. 1036, University of Illinois, August 1990.

5. D. Bau, I. Kodukula, K. Pingali, and P. Stodghill. Solving alignment using ele-
mentary linear algebra. In Proc. of the seventh Annual Workshop on Languages
and Compilers for Parallelism, pages 4.1-4.15, August 1994.

6. S. S. Bhattacharyya, S. Sriram, and E. A. Lee. Latency-constrained resynchroni-
sation for multiprocessor dsp implementation. In Proceedings of ASAP’96, 1996.

7. E. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer
programming. In Proc. of the International Conference on Parallel Architectures
and Compilation Techniques, August 1994.

8. M. Bouvet. Traitements des Signauz Pour les Systémes Sonars. Masson.

9. D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis, Rice
University, March 1987.

10. P. Clauss, C. Mongenet, and G.-R. Perrin. Synthesis of size-optimal toroidal arrays
for the algebraic path problem: A new contribution. Parallel Computing, North-
Holand, 18:185-194, 1992.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30

P. Codognet, F. Fages, J.Jourdan, R. Lissajoux, and T. Sola. On the design of
meta(f) and its application to air traffic control. In Proc. ICLP’92, Washington
DC, USA, 1992.

Béatrice Creusillet. Array Region Analyses and Applications. PhD thesis, Ecole
des Mines de Paris, December 1996.

Béatrice Creusillet and Francois Irigoin. Interprocedural array region analyses.
International Journal of Parallel Programming (special issue on LCPC), 24(6):513—
546, 1996.

A. Darte and Y. Robert. Constructive methods for scheduling uniform loop
nests. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYS-
TEMS, 5(8):814, August 1994.

Alain Darte, Leonid Khachiyan, and Yves Ropbert. Linear scheduling is nearly
optimal. In Parallel Processing Letters, pages 73-81, 1991.

Alain Darte and Yves Robert. Affine-by-statement scheduling of uniform loop
nests over parametric domains. Technical Report 92-16, LIP-IMAG, April 1992.
Alain Darte and Yves Robert. Mapping uniform loop nests onto distributed mem-
ory architectures. Parallel Computing, 20:679-710, 1994.

C. G. Diderich and M. Gengler. Solving the constant-degree parallelism alignment
problem. In Europar’96. Laboratoire d’Informatique du Parallélisme, August 96.
M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T.Graf, and F. Berthier.
The constraint logic programming language chip. In International Conference on
Fifth Generation Computer System, Tokyo, Japan, December 1988.

M. Dincbas, H. Simonis, P. Van Hentenryck, A. Aggoun, T. Graf, and F. Berthier.
The constraint logic programming language chip. In fifth Generation Computer
Systems conference, Tokyo, Japan, Dec. 1988.

P. Feautrier. Toward automatic distribution. Parallel Processing Letters, 4(3):233—
244, 1994.

Paul Feautrier. Some efficient solution to the affine scheduling problem, IT, multi-
dimensional time. Int. J. of Parallel Programming, 21(6):389-420, December 1992.
Paul Feautrier. Some efficient solutions to the affine scheduling problem, I, one
dimensional time. Int. J. of Parallel Programming, 21(5):313-348, October 1992.
Paul Feautrier. Fine-grain scheduling under resource constraints. In 7th Workshop
on Language and Compiler for Parallel Computers, August 1994.

David Foxwell and Mark Hewish. High-performance asw at an affordable price.
Jane’ IDR Review, pages 39-43, July 1996.

R. Govindarajan, E. R. Altman, and G. R. Gao. A framework for ressource-
constrained rate-optimal software pipelining. IEEE Transactions On Parallel And
Distributed Systems, 7(11):1133-1149, Nov 1996.

Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. Distance constrained schedul-
ing and its applications to real-time systems. IEEE Transactions On Computers,
45(7):814-825, Jul 1996.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview
of the fortran d programming system. In Fourth Workshop on Languages and
Compilers for Parallel Computing, Santa Clara, CA, August 1991.

F. Irigoin. Partitionnement de boucles imbriquées, une technique d’optimisation
pour les programmes scientifigues. PhD thesis, Université Pierre et Marie Curie,
juin 1987.

J. Jourdan and R. Lissajoux. Plc et séquencement des vols a l'arrivée. In Proc.
Transportation and Constraint Programming, Montpellier, France, 1995.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

J. Jourdan and T. Sola. The versatility of handling disjunctions as constraints.
Technical Report LACS-92-8, Thomson-CSF Central Research Lab, December
1992.

Jean Jourdan. Concurrence et coopération de modéles multiples dans les langages
de contraintes CLP et CC : Vers une méthodologie de programmation par modéli-
sation. PhD thesis, Université Denis Diderot, Paris VII, 1995.

K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Languages and Compilers for Parallel
Computing, Portland, Or., August 1993.

K. Knobe, J. D. Lukas, and G. L. Steele. Data optimization: Allocation of ar-
rays to reduce communication on SIMD machines. J. of Parallel and Distributed
Computing, 8, 1990.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr. Zosel, and M. Zosel. The
Hight Performance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

U. Kremer. NP—completeness of dynamic remapping. In Workshop on Compilers
for Parallel Computers, Delft, pages 135—-141, December 1993.

Ulrich Kremer. Automatic Data Layout for Distributed Memory Machines. PhD
thesis, Rice University, Houston, Texas, October 1995. Available as CRPC-TR95-
559-S.

K.G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for map-
ping nested loops on hierarchical parallel machines. In International Conference
on Supercomputing, pages 82-92, July 1992.

E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. In Proceedings of the
IEEE, September 1987.

J. Li and M. Chen. The data alignment phase in compiling programs for dis-
tributed memory machines. Journal of Parallel and Distributed Computing,
13:213-221, 1991.

A. W. Lim and M. S. Lam. Communication-free parallelization via affine trans-
formations. In Procs of the 7" Languages and Compilers for Parallel Computing,
LNCS (to appear), August 1994.

M.J. Maher. Logic semantics for a class of committed-choice programs. In Jean-
Louis Lassez, editor, ICLP’87: Proceedings 4th International Conference on Logic
Programming, pages 858-876, Melbourne, 1987. MIT.

Dion Michele. Alignement et distribution en parallélisation automatique. These
informatique, ENS,LYON, 1996. 136 P.

P. Murthy, S. S. Bhattacharyya, and E. A. Lee. Minimising memory requirements
for chain-structured synchronous dataflow programs. In Proceedings of the In-
ternational Conference on Acoustics, Speech and Signal Processing, April 199/.,
1996.

T. A. Proebsting and S. A. Watterson. Filter fusion. In Symposium on Principles
of Programming Language, 1996.

V. Saraswat. The concurrent logic programming language cp: Denotational and
operational semantics. In Proceedings of the 14th ACM Symposium on Principles
of Programming Languages, Munich, Germany, pages 49-62, January 1987.
Gilbert C. Sih and Edward A. Lee. Declustering: A new multiprocessor scheduling
technique. IEEE Trans. on Parallel and Distributed Systems, 4(6):625-637, June
1993.

S. Singhai and K. McKinley. Loop fusion for data locality and parallelism. In
Proceedings of the Mid-Atlantic Student Workshop on Programming Languages and
Systems, New Paltz, April 1996.

49

50.

51.

52.

53.

. J. Subhlok and Gary Vondran. Optimal latency-troughput tradeoffs for data par-
allel pipelines. In Proc. SPAA’96, Padua, Ttaly, June 1996.

Rémi Triolet. Contribution & la Parallélisation Automatique de Programme For-
tran Comportant des appels de Procédures. PhD thesis, Université Paris VI, 1984.
P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical con-
nective for constraint logic programming. In Koichi Furukawa, editor, ICLP’91
Proceedings 8th International Conference on Logic Programming, pages 745-759.
MIT Press, 1991.

P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in
CC(FD). Technical report, Brown University, 1992.

P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using
constraint logic programming. Artificial Intelligence Journal, 58:113-159, 1992.

This article was processed using the IMTEX macro package with LLNCS style

