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Abstract— An increasing requirement for satellites, space the system behaviour and to reduce operator interventions
probes and (unmanned) aircraft is that they exhibit robust [5]. We introduce the use of non-deterministic constraint-
behaviour without direct human intervention. Autonomous oper- based automata, and represent each system component by an
ation is required in spite of incomplete knowledge of an unceain ’ . . .
environment. In particular, embedded equipment that processes aUtom_aton model. Accor_d'ng to the_env'ronmem_al unceain
sensing data must consider uncertain input parameters whi @ dedicated automaton is synthesised automatically fram th
managing its own activities. We show how uncertainty may be model by a constraint solver. The synthesised automaton
addressed in constraint-based planning and scheduling futions  corresponds to a branch of a conditional plan. This plan is
for aerospace equipment, contrasting with some current pratice prepared offline, and the appropriate branch (automaton) is

in Integrated Modular Avionic (IMA) design. We produce a - L
conditional plan that takes account of foreseeable contirencies, selected online by the on-board system with little overhead

S0 guaranteeing system behaviour in the worst case. Executj The Constraint Programming (CP) language used for mod-
a branch of the plan corresponds to synthesising a determistic elling and solving enables the composition of our planning

finite state automaton capable of discrete event commandingf  formulation with other models of the system, such as resourc
an avionic sub-system. Experimental results show the fedslity  .4nsumption or scheduling constraints. The result, coetpar
of the approach for realistic aerospace equipment. o - . .

to traditional IMA techniques, is a more modular and comyposi
tional problem representation, and thus a better reprasent
of global system behaviour. Further, the offline plan getiema

From the first days of space missions, manned and us-complementary to purely reactive control functions. @e o
manned, the need to manage uncertainty has been crugiahd, the generated plans can be a reference trajectory for
Uncertainty arises for the same reasons as on Earth an online controller [6], or be part of a cost function for
knowledge is incomplete, the environment is changing, thgodel-predictive control [7]. On the other hand, the plaas ¢
future is unobserved — but its impact is only magnified. Whesarameterise a feedback policy for closed loop control.
designing and planning for such missions, we cannot avaid th
inherent unknowability of what might be encountered.

If future space and aeronautic systems are to achieve mor&Ve represent component activity over a fixed discrete hori-
complex missions with less human intervention, a highigon, using a constraint-based non-deterministic automato
automated mission management process will be required [@kample is seen in Fig. 1. This approach has been invesligate
The system must continuously operate in a changing afe several different mission planning domains [3], [8].rFo
perhaps ill-known environment, use complicated equipmeg@ch discrete state of the automaton, we associate a foattio
and instruments, and simultaneously fulfil mission goald ampproximation that models a physical law (e.g. speed, tempe
satisfying system requirements (such as timeliness otydafeature). Thus, a state in the automaton models the continuous
In space, examples of these systems are probes and plandighaviour of the interaction between the component and its
orbiting formations, as demonstrated by the Deep Spaceenvironment. Transitions between states in the automaton
Remote Agent Experiment [2]. In the aeronautic domaimodel abrupt changes in behaviour. In practice, we think of a
representative examples are Unmanned Aerial Vehicles f&iate of the automaton as corresponding to a mode of operatio
both military and civilian purposes [3]. of the avionic component. From one mode, the modes that

Current Integrated Modular Avionic (IMA) approaches tgould follow in a feasible sequence are specified by possible
behaviour control and planning use finite-state deterridnistransitions in the automaton. A transition between statéiseo
reactive automata, by means of a formal specification [4utomaton is triggered by a composition of events. Events ca
While this approach does not differentiate planning frofae of two kinds:
control or sensing functions, it does necessitate a perfeck Contingent eventare occurrences outside the direct con-
knowledge of the environment, and leads to a rigid specifica- trol of the agent. In the model, contingent events are
tion of the system behaviour. Hence these systems are unable represented by constraints based on physical parameters,
to handle uncertainty in an adaptive way. formulated for each time point of the horizon.

Our approach models uncertainty within a constraint-baseds Controllable commandsn contrast, are events under the
planning framework, in order to improve the robustness of direct control of the agent. In the model, controllable

I. INTRODUCTION

II. MODELLING WITH CONSTRAINT-BASED AUTOMATA
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0. Boost

Co T In both domains, space and aeronautic, the system require-
ments are for specified behaviour in the worst case. The
=0 - Djorma) atarm Aarm autonomous system must guarantee a certain performance, no
5. Falsd alarm matter what values the parameters take. This means that seek
o esiien ing one plan, however optimality is measured, is inappeipri
: 4. Emergenc : H .
e —— cool dowr fpr our proplgm, unless thg plan will hold.u_nderlaalhlllsanons
G Ta (i.e. all anticipated scenarios). Our empirical studieported
@ below, strongly suggest this is not the case. Thereforerdaro
6. Cool down to improve existing IMA properties (e.g. reliability, saf we
i Ts " .
7+ Reseting propose to generate a covering set of feasible plans.

Precisely, letP be the problem, and I6®,. denoteP under

Fig. 1. Discrete automaton representing the behaviour of a tmuswealisationr We find a set of plansS, such that for every
sub-system. States corresponds to the edges and trasditiotne . '

vertices. The temperature increases will differ in the tlwousting feasible realisation of P, at least one element 6fis awgble_

states Boost Nominal thrus}, and in the two cooling states. Tigg ~ Plan for ;.. Ideally, of all the sets that cover every realisation

variables are commands, tig variables are state time-outs. in this way (thecomplete decisionsS should have minimal
cardinality, i.e. be the smallest covering set.

The outcome of our planning function will thus be a com-
commands correspond to decision variables. These vaflete conditional plan. This corresponds to (1) synthegisi
ables are distinguished as eithiene-out variableswhich 3 set of deterministic automata and a timed state sequence
model the command for interrupting a state, obiice- for each, and (2) building a discrimination tree to choose
point variables which model the selection of one ofwhich automaton to apply in which realisation. Due to the
several alternative transitions. composition of the constraints, this planning entails sgv

In Fig. 1, the transition into state 3Marning alarn) is several related NP-hard subproblems.
contingent on the temperature being above a critical value;For comparison, we will also look at the plan of maximal
whereas the transition from state Rgsetinginto boosted or robustness. That is, the one plan that (simultaneouslyrsov
nominal thrust is governed by a decision variable. as many realisations as possible. While a single plan is
In the constraint model that forms the automaton, waitractive, such ainiversal decisiowill not exist in general.
distinguish between two types of variables: uncontroiabl

parametersand controllablelecision variable$9]. The value B. Constraint-Based Automata

of a parameter is imposed by the environment; moreover, ourWe now present the mathematical modelling of constraint-
knowledge of its value might be incomplete. It is througtg) P 9

parameters that we model uncertainty, which we represent (%sed automata, extgnded to ha_lndle e_nwronment uncgrtaint
intervals of discrete values. Let H € N be thg finite plannlng horizon. Any € [0, H]
Planning consists of defining consistent sequences Ofsstaqgrresponds to a discrete time event_. hebe the ngmbe_r of
in order to reach a given target state. This correspondseto a_tes of thg automatqn. Each staje i € [0,n —1] is actlye
equipment changing modes of operation, in a feasible way,% |_nstant_t .'f. the pred|catecri(t_) holds true. By convention,
reach a target mode. The target mode is specified by missfoh'S the |n_|t_|al state and(0) is a_lvyays m_Je' .
and operational goals. The sequence (plan) must satisfy thd) ransitions, events and decision variablesiransition
model-based constraints and, possibly, optimise a given pePecificationd(oi,a;), j # i, models a change of behaviour
formance function. It is natural to use automata to represdiftween distinct states; ando;. The transitiond; (o, 0;) is
the plan, because: first, this is how low-level component IMKiggered at timet if the stateo; is active at¢ —1 and the
are modelled; and second, automata conveniently trarigtate €VENt @ssociated to the destination stafeholds true at:

real-life controllers for the command of equipment. Vi,jVt: Ej(t) Aoi(t — 1) = 6,(04,0;) 1)

A. Obijective for Robust Planning ] o

The planning problem we address has non-determinis icAn event E(t) € {1, T} constrains the activation of

i pd ‘ 9 pt' ¢ ts. fullv ob ble staed 5 given state. It can be a contingent event, raised due to
actions due to contingent events, 1Ully observable s ' the component’s environment, or a controllable event, or
ill-known data (the parameters). The uncertainty bringgwi

instance, we aim to produce robust plans: plans useful iryevt—Fn

re_?rils;;]\pon %f artlth ||:;]ate_d un};‘ertalr?tylovl;/evetrﬁn cobn_Jur:_ctlon fthe associated decision variables: the commagighsand time-
w IS TODUST behaviour there may De Other OLJECUVES, 18, i (Z3); their values are assigned by the solving process. For

!nsiance a lmmtlmum pl!an quallty;ta;nd ocher requirements, fﬁ1e latter time-out variables we impose that the state besom
instance a fimit on oniine computation time. inactive after a given amount of time:

1if unanticipated contingent events occur, or if parametai® realised .
values outside their domains, a reactive response is reyeSee [10]. Vi, Vt: =oi(t — 1) Aoi(t) = —oi(t + T3) 2



2) Consistent action sequencedraditional techniques C. Example: Planning the Commands of a Thruster
adopted by engineers are based on deterministic reactive aung 4 running example for the paper, we introduce a rep-

tomata: in any given state, an automaton can reach exa@ly @8sentative planning problem involving a thruster subtesys
state. These automata cannot be adapted easily to envinbnnygs constrained Thruster Control ProblefCTCP). The au-
changes. Hence we propose to widen the approach by liftiggnaton of Fig. 1 is a simplified version of such a system.
the deterministic assumption, such that multiple traosgican The controllable events consist of a set of commands that
be specified from a given state. However, according to a givBBriodically trigger nominal or boosted stages of thrust fo
environment realisation, the selection of a unique destina g yariable period of time. These different stages can be-inte
state is ensured by the constraint: rupted using time-out decision variables. Contingent t/are
hardware alarms that change the equipment mode, accoading t
' (3) Vvarious temperature limits. Cooling modes, although &fggl
Ay s.t. 0t +1) Ade(oi, 0;) by contingent events, can be interrupted by a time-out biia
o . The goal is to achieve a certain thrust performance in a
By (3), exactly one destination state can be active aftgfen time window, while maintaining the internal temperat
stateo;. Further, since we do not consider multiple paralllithin given limits. Generating a plan for one realisation
activities, we have the constraint (4) to ensure only ontstggnsists of instantiating decision variables that comesipto
can be active at a time: commands and time-outs, while satisfying the temperatude a
thrust requirements.
An instance of the CTCP is in atmospheric entry of a probe.

For illustration, we focus on the temperature, neglectimg t

It follows that the sequence of active states corresponger parameters. We represent uncertainty in parametezs/a
to the behaviour of the component, and the Sequencetﬂfdiscrete non-stochastic intervals.

intermediate commands and events represent actions. For our example CTCP, the set of states and their associated
3) Environmental constraintsFeasibility constraints, en- entry events can be summarised as follows:
tailed by environmental dynamics (e.g. speed, temperature

Vi,Vt: oi(t) Aot + 1) =

vt,3li s.t. 0(t)

. state controllable contingent
and cumulative resources (e.g. ergol, power supply), age-sp 0. Boost T C
o X : ! . b, Co
ified as follows. We assume that in a given state, a physical 1 Nominal thrust T, Ch
parameter evolves in a regular way, such that it can be > Normal boost alarm - warning
approximated using a cumulative function. This is similar t 3. Warning alarm warning
a resource utilisation formulation in which the resouroeele 4. Emergency cool-down Ty - false alarm
att is a function of the level at — 1 alone. 2- E%'iuedﬂw . false alarm

Let p(t) : [0,H] — N be such a physical parameter. A 7 Reseting ¢

problem-dependent recursion describes the evolutiop(of

in terms of a dynamic functiorf; for a given stater;: From its graphical representation in Fig. 1, we see that the

automaton involves a cycle. A preprocessing function wsol
Vi,V oy(t) = p(t) = fi(pi(t — 1)) (5) Fhe automaton states along_the horizon; as the number adxycl
increases, so does the horizon.

Equation (5) approximates the dynamicg6f). The initial Transitions between states are characterised as follows:

conditions of the system are represented j§9) and are transition predicate deterministic
arbitrarily constant. Contingent events are then definéogus Lhrust 2507,01;,25077003 no
; ; eat 00,03),0(00,02 yes
physical parameters and a constraint Nominal temp. 6(os. 0e). 8(as . o5), ves
. d(0s,06)
Vi,Vt 2 Ei(t) < ci(pi(t)) (6) Alarm (o3, 04),0(03, 05) yes
Reset 0(c4,07),0(06,07) no

Both (5) and _(6) are problem-dependent. The structurez andThe physical parameters, temperatii¢), and thrust per-
hence complexity, of these constraints can lead to vergwdiff formance b(t), are approximated using families of linear

ent representations, and hence different solving perfoo®a o, sjons. Each stateis associated with such a function.
4) Parameter uncertainty in the constraint modeThe Thys for this problem, (6) is:

constraint-based automaton described in this sectiond@m

constraint satisfaction problem (CSP) with parametersaRe Vi Vi - { h(t)

that a classical CSP over finite domains is a tupfeD, C), T b(t)

whereV is a finite set of variableq) is the set of correspond-

ing domains, and is a finite set of constraints. A solution is Constantg:(0) andb(0) are arbitrarily set to known steady

a complete consistent value assignmenmiked CSH11] is values, and the performance functions are boundét): €

a tuple(A,V,U,D,C), whereA is a finite set of parameters[0, hmax] andb(t) € [0, bmax], Where the constarity, is the

andi is the set of corresponding domains. maximal thruster performance.

h(t —1) + K;

b(t — 1)+ B; %



More complex constraints, including non-linear, continsio Algorithm 1 Decomposition for covering set of plans

and disjunctive constraints, can be formulated in the same w B « % Ezad_ realisation$ t
. . — ecision—environment pailfs
For the purpose of_ cIanFy, we restrict the temperature andg Uy % - x U, {environments still to be coverpd
performance recursions in this paper to be linear; even Soepeat
the global problem in the example is non-linear due to the ICh%OEE an enVironmﬁthffo?" E
. . : et e constraints that enforce

presence of choice-points and the event formulations. let P be the CSP(A UV, UD,CUE)

Now we can state the constraints corresponding to events it p is consistenthen

warning andfalse alarm let s be a solution of P _
let d be s projected onto the variableg
Vvt € [0. H] - warninag(t & h(t) > R 8 R <+ covers(d) {realisations covered by}
€0, H] 9(t) (8) 2 heritical (8) Add the paird—R to D
Vt € [0, H] : false alarm(t)<:> h(t) < heritical (9) E + U, ¢ decompose(e’, R)
else
where heritical 1S @ threshold value lower tham,.,. Finally, ﬂ(‘j realisations ine infeasible
the thrust must satisfy a minimum performanBg,;,,: end if eto B
H until E =0 {all feasible realisations coveréd
return (B, D
i=1

IIl. SOLVING ALGORITHMS ) ) o ] )
approximations to a complete decision. If the algorithm is

Iln t_h|s sgptm_n, we Ou}!mg. alg?]mhms_ to Isolve for the tV:f%llowed to finish without interruption, it returns a complet
planning objectivesmes, finding the minimal covering set of . 40021 decision.

plans; andnrp: finding the single plan of maximal robustness. 2) mrp: Maximal Robustness PlanWe give two exact

In the next section we report the experimental results wh : o . :
applied to the Constrained Thruster Control Problem. gi]gonthms for the task of finding the plan that is feasible fo

Declarativelv. th i f h d _bth maximal number of realisations. As before, the first is
eclaratively, the semantics of our approach are descri aive method. It considers every realisation, computlhg a

by an operator acting on the uncertain problem to give ?gasible solutions for each. When done, it chooses of all the

element of an algebraic structure. This structure is thesesnsb_ solutions the plan that occurs most frequently. Unsunpgisi

of the set of all posglblg plans (l.e._every plan that is telasi (?Igorithm nai ve is prohibitive in both time and space.
for at least one realisation), which is a boolean algebraeun - . .
A more efficient approach is to search using branch-and-

subset inclusion. The set of plans we derive operationall}/

. . . : ound over the space of feasible plabsb, the second algo-
using the solving methods below, is an instance of the cdytai . . .
N rithm for mrp, therefore extends the CSP inference technique
closure approach to data uncertainty in CP [12].

o  Npe of forward checkingwithin a branch-and-bound search tree,
We say that a realisation (scenario)féasibleif the con- ; L
where the value of each leaf node is number of realisations

straints of the problem permit it to ever occur (otherwis : . ) e .
. . . DS . ; It covers. This type of algorithm is familiar in CP, and in
infeasiblg. A feasible realisation' is good if some solution , . : e .

this context is a non-probabilistic version of that for no

s exists for the decision variables, given that the pararseter o o
have taken their values unde(otherm?isebad); thens ?s said Observability probabilistic CSP [9].
to coverr. By robust we mean that a solutiofy covers more
realisations than a solutios.

1) mcs: Minimal Covering Set of Plans:\We give two ~ We modelled the example problem, and implemented the
algorithms for the task of finding a set of plans that covergvesolving methods, using the EQRS’ system [13]. We consider
realisation. Neither guarantees the set of minimum calitina the CTCP with three classes of magnitude of uncertainty, and
the trade-off is that a smaller covering set yields a mowmgth three different performance requirements. The former
compact conditional plan, but might take more time to find.denoted A-C, have intervals of modest, intermediate, and

The first algorithm,heuri sti c, is a naive method: it broad width respectively. The latter, denoted by a perforrea
considers every realisation. The idea is to first computeohjective as a percentage of the maximum possible, are set at
heuristic plans that is likely to cover many realisations. For &0, 70 and 90% (contrast with (10)). For each of the nine
realisationr, if 5 is feasible, we are done; if not feasible, weroblems that result, we solve for a number of cycles in
compute from scratch a feasible plan Bf. 1...10. Many of the instances are infeasible for higher time

A more efficient approach is, for each plarcomputed, to horizons under any realisation, indicating that if we agém
remove from future consideration all realisations covesgd to thrust for so long, the probe will unavoidably overheat.

s. This is the underlying idea of the decomposition algorithm 1) mcs: Minimal Covering Set of PlansFor the heuristic
deconp, given as Algorithm 1. It is based on the conditionainethod, we chose as the heuristic solutiothat correspond-
decision method for mixed CSPs with full observability [11]ing to the realisation where every temperature increment is
Central to the method are so-calledvironments— set of maximal. The intuition is that the plan for the worst case may
realisations — and their judicious decomposition. The ltesdend to be robust for other cases. Compared with other simple
is an anytime algorithm that computes successively closgroices, we found this heuristic performed best.

IV. EXPERIMENTAL RESULTS
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Fig. 2. Algorithms compared on the constrained thruster controblem.

In Fig. 2(a) we plot the ratio of plan sizes akuri s-
tic over deconp; thus the greater the value, the great
the advantage to the decomposition algorithm. Note that
vertical axis is on a logarithmic scale. The greatest diffee
between the methods is seen for each instance to be wherj|the

instance is at its hardest; beyond this critical point, tretdnce H
tends towards infeasibility, and the ratio of plan sizes |n o
Fig. 2(a) tends towards unity. In some more tightly conatdi
instancesdeconp can take longer; but its running time isrig. 3. Example of solutions for two close realisations. Hegizontal bars
more consistent than the heuristic method between instangtenote the state of the synthesised automata, and thealdinies denote the
Moreover. if we measure quality of solution by the size of thtgmperature at each transition. Observe that the firsttthgustages differ.
set produced, thedeconp consistently yields better quality

solutions across other problem |nstahces. seen across all the CTCP classes. This means that there are
_ 2) mrp: Maximal Robustness Plarfig. 2(b) shows, as the any potential realisations for which the plan manager doul
line marked with boxes, the number of realisations covered, « to take remedial action online.

by the most robust plan. We observe that the most robust plarkig 3 gemonstrates the sensitivity of solutions to the CTCP
covers a large majority of the plans when the horizon is Shogh, perturbations in parameter values. It shows optimal lan
As the number of cycles increases to 4 or 5, however, apg 1 realisations: the realisations differ in the valdeoaly

the plan space becomes larger, the percentage of reaiisati,e parameterrc; = 3 versusk, = 4. This sensitivity, first,
covered drops sharply. This effect is more pronounced as {ig)|ains why robust plans are hard to find, and second, makes

amount of uncertainty, and so the number of realisationgeeryal reasoning on the parameters difficult to apply.
increases. As anticipated+b easily outperformsai ve,

which struggles for the harder instances. V. RELATED WORK

3) Discussion: In Fig. 2(b), we also plot the sum of the Planning in the space domain is reviewed in [2]; here and
time (in seconds) to calculate the optimal plan for eadh aeronautics, active research is ongoing into autonomous
realisation, and the time fancs by deconp, together with systems, and planning is central to their behaviour [14].
the percentage of feasible realisations and the percemtage An example, noteworthy as the first autonomous system to
these covered by the most robust plan (the latter two datasgb into space, is the DS1 Remote Agent. Here, an embedded
scaled by two). Our results indicate that the hardness @dnstraint planner deals with medium-term spacecrafiv-acti
the CTCP jumps, before declining again once all realisatioities while a low-level system provides short-term reausio
become infeasible: observe the peak in difficulty farycles; [10]. Although DS1 is innovative, it handles only limitedreo
infeasibility occurs at 8 cycles. The time and percentage straint classes and lacks modelling of ill-known paranseter
feasible realisations appear to be inversely related. Our approach to planning under uncertainty corresponds

Secondly, Fig. 2(b) shows an inverse relationship betwetm contingentplanning (for mcs) and conformantplanning
problem difficulty and plan robustness. The maximally rabugfor mrp) [15]. However, application of much existing work
plan in general covers a small percentage of the feasilne planning under uncertainty to avionic equipment control
realisations, at least for non-trivial cases. Similar derare is difficult. Besides the domain-specific requirements dote




earlier, actions must be scheduled with respect to rich éeadp planning and execution. Besides studying larger and broade
constraints, and the system must cope with large-scale- prelzamples, future work will look to integrate planning funais
lems. Moreover, for low-level components, behaviour must linto avionic architectures exposed to uncertainty.

guaranteed in the worst case. The latter point, togethdr wit
the difficulty of estimating probabilities, also hampers tise
of Markov Decision Processes.
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uses a language which conceives of a plan as a (determjnistic
finite state automaton [16]. MBP accommodates uncertaint
in initial state, besides non-deterministic actions anigiéy-
observable effects. In contrast to our approach, it usésmdis
tions rather than intervals to represent uncertainty, anabi (2]
designed to handle temporal nor heterogeneous constraints ,

Despite the development of generic, expressive constraint
based planners, less work considers constraint-basediptan
under uncertainty. One exception is planning with a class df!
universally quantified constraints for incomplete infotima
[17]. On the other hand, robust planning with constraints hal5]
been successfully shown for simple temporal problems with
uncertainty in task durations [18]. Away from the fields of(s]
planning and intelligent control, robust computation isllwe
developed in both engineering and optimisation, e.g. [19].

More generally, handling uncertainty in constraint progra
ming is an emerging area of research [12]. Robust decision
making under anticipated future events is considered in. [20[
Our search for a conditional decision uses techniques fham t
mixed CSP framework [11]. E)

In constraint-based control, a generic framework based on
multiple constraint solvers is presented in [21], while thpo)
advantages of composing logical propositions and comstrai
formulations in modelling are presented in [6]. In model-
predictive control (MPC), constrained optimisation teiciues [11]
can be used to solve the plant control problem online [7]. Our
approach echoes min-max robust MPC, in that satisfaction[gf]
the control problem is guaranteed for every realisationwHo
ever, in general, uncertainty is not tackled using constrai
based planning approaches.

1]

(7]

[13]
[14]

VI. DISCUSSION ANDFUTURE WORK

. . N . [15]
This paper illustrates how to model uncertainty in planning

the activities of aerospace equipment. We use a constraint-
based model approach which allows expressive modelling (3%
equipment and its actions. We have addressed incomplete
knowledge in parameter values by providing a condition8i’]
plan. Each branch of the plan corresponds to synthesisi[@g
a deterministic finite state automaton, capable of discrete
event commanding of the equipment. This ensures that systéf
behaviour requirements are met. Since the planning is dqg@
offline, the response time to (anticipated) contingent &/en
minimal. On a representative example, experimental result
even with preliminary algorithms, indicate the feasililif [21]
the approach and the robustness of the conditional plan.

Plan generation is only one part of an autonomous system.
Execution of the conditional plan our approach provides
involves two factors. The first is when the true values of the
parameters will be acquired; the second is the interleasfng
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