Digital Support Platform for Beekeepers
Yassine KRIOUILE(1)(2), Lamine BOUGUEROUA(1), Corinne ANCOURT(2), Katarzyna WEGRZYN-WOLSKA(1)(2), Jean-Charles HUET(1)
(1) ALLIANSTIC, Efrei, 30-32 Avenue de la République, 94800 Villejuif, France
(2) MINES ParisTech, PSL University, Centre de recherche en informatique, 35 rue Saint Honoré, 77300 Fontainebleau, France

Introduction
Bees are suffering from a big problem: the high rate of mortality. This is mainly caused by climate change, intensive farming, pesticides use and varroa parasites.

Consequences:
- Decrease of quantity of bees' products like honey
- Diminution of pollination considered as a primordial step in agriculture

Scientific work has allowed establishing concrete elements to guide the decisions of beekeepers. But this knowledge is not well transferred to them and does not consider their different needs.

Our approach: a large computer system based on artificial intelligence. It would collect information, build and improve beekeeping knowledge, and help beekeepers in decisions making

Two Layered Structure
This system would manage two kinds of data:

- **Information**: facts and events happening in the domain of bees and beekeeping
 - **Knowledge**: rules and principles related to the domain of bees and beekeeping ("if the beekeeper has more than 3% varroa infestation, the hive should be treated")

Information:
- **Local** Information concerns points with specific coordinates; beekeeper scope (colony health, temperature, humidity, weight...)
- **Global** Information: statistics summarizing local information; beekeeping organization scope (regional distribution of predatory Asian hornets, weather forecast...)

Knowledge:
- Knowledge can be materialized by deep neural networks and high semantic models. It is created and refined by the system using collected information.
- Locally, beekeepers have slightly different needs and objectives (pollination service, production of honey, production of royal jelly...), so each one has its own personal knowledge based on the global one.

Integrating Elements

Elements interacting with the system:
- Managing tools for Beekeepers: collecting information and managing apriaries and hives
- Existing systems: environment systems providing weather data
- Organizations: state institutions or associations sending alerts
- Experts: sending information about best practices and guidelines
- Social Web: tweets concerning beekeeping
- Audio: recording of bees’ sounds
- Image: images of bees’ colonies

The system would implement mechanisms for handling heterogenous and multi-source data.

Artificial Intelligence
The system exchanges knowledge with experts:
- Rules given by experts and used for extending the knowledge
- Predictions based on current situations
- Understanding knowledge provided to experts in a normalized format

The local model is based on the global model, which is refined according to the beekeeper’s specific context in order to help him make decisions that meet his objectives (treat colony, move hive, check bees’ health status...).

We will first focus our work on the system agent responsible for processing images.

Challenges & Breakthroughs

- Scalability
- Big and heterogeneous data analysis
- Noisy environment
- Constraints of beekeeping domain
- Image processing: disease recognition,...
- Voice processing: beekeeper speech recognition,...

Breakthroughs
- Definition of a beekeeper ontology
- A flexible decision-making system adapted to global and local environments
- Hybrid artificial intelligence

Conclusion & Perspectives
We believe that the already started implementation of this architecture in collaboration with 415 beekeepers will lead to developing a global and flexible system which would allow beekeeping community to share relevant information and knowledge, and take appropriate decisions.

We hope that our future collective intelligence system would participate in the prevention of bee's deterioration. In long term we will try to extend the field of use of the system to the European level.

Acknowledgements
Special thanks to the ministry of agriculture and food which is financing PNAPI through CASDAR (the special appropriation account "Agriculture and Rural Development") under the project number 1BART1831.

Related works

Contact Information
Yassine Kriouile
+33 6 18 84 60 50
yassine.kriouile@mines-paristech.fr
yassine.kriouile@intervenants.efrei.fr

Figure 3: Data visual management by expert

Knowledge: Knowledge can be materialized by deep neural networks and high semantic models. It is created and refined by the system using collected information.

Locally, beekeepers have slightly different needs and objectives (pollination service, production of honey, production of royal jelly...), so each one has its own personal knowledge based on the global one.

Context
ITSAP (Technical and Scientific Institute of Beekeeping and Pollination) proposes the project PNAPI.

Funder: The French Ministry of Agriculture and Food financing actions within the agricultural and rural development program

Duration: 42 months started on January 2019

Technical and research partner: EFREI (Engineering School of Digital Technologies)

Research laboratory: ALLIANSTIC

The project will be realized in collaboration with other partners specialized in beekeeping industries.

Figure 5: System involving the system

The system would implement mechanisms for handling heterogenous and multi-source data.