Performance of OpenMP loop transformations for the acoustic wave stencil on GPUs

²Universidade de São Paulo, Brazil ³Mines Paristech/PSL, France

J.F.D Souza^{1,2} L.S.F. Machado¹ E. Gomi² C. Tadonki³ S. McIntosh-Smith⁴ ¹Universidade Federal de São Carlos (UFSCar), Brazil

OpenMP and heterogeneous architectures

- The support for heterogeneous architectures was introduced in OpenMP 4.0 and OpenMP 4.5.
- OpenMP 5.1 introduced *unroll* and *tiling* loop transformations. Code offloading for these transformations is supported in Clang 13.
- Despite being around for decades, the availability of these transformations for portability across compilers in OpenMP is relatively new. And we exercise it.

The application kernel

Kernel of seismic applications such as in full-waveform inversion (FWI) and reverse-time migration (RTM), the propagation of acoustic waves can be be modeled as follows:

$$rac{1}{v_p^2}rac{\partial^2
ho(\mathbf{x},\mathbf{y},\mathbf{z},t)}{\partial t^2} -
abla^2
ho(\mathbf{x},\mathbf{y},\mathbf{z},t) = f(\mathbf{x},\mathbf{y},\mathbf{z},t) \quad (1)$$

where v_p is the velocity, $p(\mathbf{x}, \mathbf{y}, \mathbf{z}, t)$ is the pressure field, and f(x, y, z, t) is the source. This PDE is solved by finite differences on a 3D grid spaced by distances Δx , Δy , and Δz . By using second-order central differences, we get the following discretized equation (for 2nd-spatial order), where Δt is the time increment:

$$p_{i,j,k}^{(n+1)} = 2p_{i,j,k}^{(n)} - p_{i,j,k}^{(n-1)} + 2\Delta t^2 \cdot v^2 \left(\frac{p_{i+1,j,k}^{(n)} - 2p_{i,j,k}^{(n)} + p_{i-1,j,k}^{(n)}}{\Delta x^2} + \frac{p_{i,j+1,k}^{(n)} - 2p_{i,j,k}^{(n)} + p_{i,j-1,k}^{(n)}}{\Delta y^2} \right)$$

$$(2)$$

$$+ rac{p_{i,j,k+1}^{(n)} - 2p_{i,j,k}^{(n)} + p_{i,j,k-1}^{(n)}}{\Delta z^2} \Big)$$

A major performance issue with stencils is their high demand for memory access.

1 for(int t = 0; t < time_steps; t++) {</pre> #pragma omp target teams distribute parallel for \setminus collapse(3) for(int i = radius; i < d1 - radius; i++){</pre> for(int j = radius; j < d2 - radius; j++){</pre> for(int k = radius; k < d3 - radius; k++){</pre> for(int ir = 1; ir <= radius; ir++){</pre> // stencil point calculation

Listing 1: The baseline strategy for the wave equation on GPUs.

1	for(int
2	#prag
	colla
3	#prag
4	for(
5	for
6	t
7	
8	
9	
10	

b) space order 8 a) space order c) space order 16 **Figure 1:** Shapes of 3D stencils used in the experiments.

Setup of Experiments

• Experiments on three GPU architectures (see Table 1) • Discretized 2nd time order, space orders of 2, 8, and 16; • Grid sizes: 256³, 512³, and 1024³ points with 400, 800, and 1600 time steps;

• Float precision FP32, and FP64;

• Four strategies: collapse, unroll, tile, tile+unroll. For tilling, best block shapes were obtained via auto-tuning.

Table 1: GPUs architecture specifications.

	RTX 2080 Super	V100	A100
GPU Architecture	Turing	Volta	Ampere
SMs	48	80	108
CUDA cores / GPU	3072	5120	6912
Peak FP64 TFLOPS	0.35	7.8	9.7
Peak FP32 TFLOPS	11.2	15.7	19.5
Memory Size	8 GB	32 GB	40 GB
Memory Bandwidth	496 GB/s	900 GB/s	1555 GB/s
Shared Memory / SM	64 KB	96 KB	164 KB
L2 Cache Size	4 MB	6 MB	40 MB

t t = 0; t < time_steps; t++) { gma omp target teams distribute parallel for \ apse(3)gma omp tile sizes(BLOCK1,BLOCK2,BLOCK3) int i = radius; i < d1 - radius; i++) {</pre> r(int j = radius; j < d2 - radius; j++){ for(int k = radius; k < d3 - radius; k++){</pre> • • • #pragma omp unroll full for(int ir = 1; ir <= radius; ir++){</pre> // stencil point calculation

Listing 2: Using tiling and unroll.

H. Senger ^{1,2}

⁴University of Bristol, UK

block size.

