
Performance of OpenMP loop transformations for the acoustic wave stencil on GPUs
J.F.D Souza 1,2 L.S.F. Machado 1 E. Gomi 2 C. Tadonki 3 S. McIntosh-Smith 4 H. Senger 1,2

1Universidade Federal de São Carlos (UFSCar), Brazil 2Universidade de São Paulo, Brazil 3Mines Paristech/PSL, France 4University of Bristol, UK

OpenMP and heterogeneous architectures

• The support for heterogeneous architectures was

introduced in OpenMP 4.0 and OpenMP 4.5.

• OpenMP 5.1 introduced unroll and tiling loop

transformations. Code offloading for these

transformations is supported in Clang 13.

• Despite being around for decades, the availability of

these transformations for portability across compilers

in OpenMP is relatively new. And we exercise it.

The application kernel

Kernel of seismic applications such as in full-waveform

inversion (FWI) and reverse-time migration (RTM), the

propagation of acoustic waves can be be modeled as

follows:
1

v 2p

∂2p(x, y, z, t)

∂t2
−∇2p(x, y, z, t) = f (x, y, z, t) (1)

where vp is the velocity, p(x, y, z, t) is the pressure field,

and f (x , y , z , t) is the source. This PDE is solved by

finite differences on a 3D grid spaced by distances ∆x ,

∆y , and ∆z . By using second-order central differences ,

we get the following discretized equation (for 2nd-spatial

order), where ∆t is the time increment:

(2)

p
(n+1)
i ,j ,k = 2p

(n)
i ,j ,k − p

(n−1)
i ,j ,k

+ 2∆t2.v 2
(p(n)i+1,j ,k − 2p

(n)
i ,j ,k + p

(n)
i−1,j ,k

∆x2

+
p
(n)
i ,j+1,k − 2p

(n)
i ,j ,k + p

(n)
i ,j−1,k

∆y 2

+
p
(n)
i ,j ,k+1 − 2p

(n)
i ,j ,k + p

(n)
i ,j ,k−1

∆z2

)
A major performance issue with stencils is their high

demand for memory access.

1 for(int t = 0; t < time_steps; t++) {

2 #pragma omp target teams distribute parallel for \

collapse (3)

3 for(int i = radius; i < d1 - radius; i++){

4 for(int j = radius; j < d2 - radius; j++){

5 for(int k = radius; k < d3 - radius; k++){

6 ...

7 for(int ir = 1; ir <= radius; ir++){

8 // stencil point calculation

Listing 1: The baseline strategy for the wave equation on GPUs.

Figure 1: Shapes of 3D stencils used in the experiments.

Setup of Experiments

• Experiments on three GPU architectures (see Table 1)

• Discretized 2nd time order, space orders of 2, 8, and 16;

• Grid sizes: 2563, 5123, and 10243 points with 400, 800,

and 1600 time steps;

• Float precision FP32, and FP64;

• Four strategies: collapse, unroll, tile, tile+unroll. For

tilling, best block shapes were obtained via auto-tuning.

Table 1: GPUs architecture specifications.

RTX 2080 Super V100 A100

GPU Architecture Turing Volta Ampere

SMs 48 80 108

CUDA cores / GPU 3072 5120 6912

Peak FP64 TFLOPS 0.35 7.8 9.7

Peak FP32 TFLOPS 11.2 15.7 19.5

Memory Size 8 GB 32 GB 40 GB

Memory Bandwidth 496 GB/s 900 GB/s 1555 GB/s

Shared Memory / SM 64 KB 96 KB 164 KB

L2 Cache Size 4 MB 6 MB 40 MB

1 for(int t = 0; t < time_steps; t++) {

2 #pragma omp target teams distribute parallel for \

collapse (3)

3 #pragma omp tile sizes(BLOCK1 ,BLOCK2 ,BLOCK3)

4 for(int i = radius; i < d1 - radius; i++){

5 for(int j = radius; j < d2 - radius; j++){

6 for(int k = radius; k < d3 - radius; k++){

7 ...

8 #pragma omp unroll full

9 for(int ir = 1; ir <= radius; ir++){

10 // stencil point calculation

Listing 2: Using tiling and unroll.

Table 2: Tile sizes applied to 2nd spatial order with FP64.

GPU Grid size
Best tile sizes

Axis 1 Axis 2 Axis 3

RTX 2080
2563 32 1 4

5123 16 1 4

V100

2563 1 1 4

5123 8 1 2

10243 8 1 2

A100

2563 2 2 4

5123 2 1 4

10243 8 1 4

Figure 2: Gpoint/s for space order 2.

Figure 3: Gpoint/s for space order 8.

Figure 4: Gpoint/s for space order 16.

Figure 5: Roofline plot for FP32, 2nd space order on RTX 2080 Super.

Main Findings

• As a general remark, both loop transformations, unroll and

tiling can yield significant improvements to the performance of

the kernel evaluated on all GPUs evaluated.

• Performance gains ranged from 1.13x to 2.93x. In most

scenarios, the best performance was achieved by combining

unroll and tiling.

• The performance of tiling is highly sensitive to the choice of

block size.

1


