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Abstract
Two main lines have been adopted to prove the cut elimination theorem: the syntactic one, that
studies the process of reducing cuts, and the semantic one, that consists in interpreting a sequent
in some algebra and extracting from this interpretation a cut-free proof of this very sequent.

A link between those two methods was exhibited by studying in a semantic way, syntactical
tools that allow to prove (strong) normalization of proof-terms, namely reducibility candidates.
In the case of deduction modulo, a framework combining deduction and rewriting rules in which
theories like Zermelo set theory and higher order logic can be expressed, this is obtained by
constructing a reducibility candidates valued model. The existence of such a pre-model for a
theory entails strong normalization of its proof-terms and, by the usual syntactic argument, the
cut elimination property.

In this paper, we strengthen this gate between syntactic and semantic methods, by providing
a full semantic proof that the existence of a pre-model entails the cut elimination property for the
considered theory in deduction modulo. We first define a new simplified variant of reducibility
candidates à laGirard, that is sufficient to prove weak normalization of proof-terms (and therefore
the cut elimination property). Then we build, from some model valued on the pre-Heyting algebra
of those WN reducibility candidates, a regular model valued on a Heyting algebra on which we
apply the usual soundness/strong completeness argument.

Finally, we discuss further extensions of this new method towards normalization by evaluation
techniques that commonly use Kripke semantics.
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1 Introduction

The cut elimination theorem [16] is a central result in proof theory and type theory. From a
proof theorist’s point of view, it implies the consistency of the considered logical framework, as
well as other nice results like the disjunction property, the witness property or the subformula
property. On the other side, the type theorist is more interested in the cut elimination
process itself, and in its termination. Those two different interests led to two distinct main
lines of showing cut elimination, namely the semantic and the syntactic methods.

The semantic methods [18, 5, 19] use the soundness/strong completeness paradigm: first
show that if we have a proof of A under the hypothesis Γ, then every model of Γ, valued on
a Heyting algebra, is a model of A, and then show that if the latter holds, then we can build
a cut-free proof of A when assuming Γ.

© D. Cousineau and O. Hermant;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 A semantic proof that reducibility candidates entail cut elimination

A modern variant of the syntactic method uses the Curry-Howard correspondence and
Tait-Girard’s reducibility method [17], in order to prove normalization of β-reduction on
proof-terms (that syntactically entails cut elimination).

The logical framework we shall work in is Deduction modulo [12]. It is a generic way
to integrate computation rules into a deduction system, in our case natural deduction. In
this logical framework, theories are expressed via rewrite rules on first order terms and
propositions, instead of axioms. One can express, only with rewrite rules, both theories that
satisfy the cut elimination property (such as Zermelo set theory [13], Peano’s arithmetic [15]
or higher-order logic [11, 14]) and theories that do not. One particularity of this framework
is that all theories (expressed only with rewrite rules) satisfying the cut elimination property
are consistent: if there is no axiom a cut-free proof always ends with an introduction rule,
and one cannot prove False with a cut-free proof. Hence, the cut elimination property entails
that False is unprovable, which is not true in presence of axioms (consider, for instance, the
theory containing the only axiom False. It enjoys cut elimination but it is not consistent).

A first link between the semantic and syntactic methods to prove cut elimination was
made by defining reducibility candidates for deduction modulo [14] as a model, and to show
that this model has a pre-Heyting algebra structure [10] (a Heyting algebra in which the
order is replaced by a pre-order). It can be shown, with the usual (syntactic) reducibility
arguments, that having such a (pre-)model entails strong normalization and therefore cut
elimination for a theory in deduction modulo.

In this paper, we strengthen this gate between syntactic and semantic methods, by provid-
ing a full semantic proof that the existence of a pre-model entails the cut elimination property
for the considered theory in deduction modulo. Since our goal is cut elimination, we consider
weak normalization rather than strong normalization. We define a new simplified variant of
reducibility candidates à la Girard for weak normalization, which is a first contribution of
our work. We give those reducibility candidates a pre-Heyting algebra structure. Then we
build, from a given model valued on that pre-Heyting algebra, a regular model valued on a
Heyting algebra, that we can use to prove cut elimination with the usual soundness/strong
completeness argument. This is the second contribution of our work.

Many results have been obtained in the direction we follow, especially in the normalization
by evaluation approach [1, 2, 4, 6, 7], based on a Kripke-like semantic structure. In this paper,
the proof of cut elimination generates, in some cases, also a normalization by evaluation
algorithm, but with respect to the standard Heyting semantics notion.

We first introduce Deduction modulo in Sec. 2. Sec. 3 is devoted to semantics (Heyting
and pre-Heyting algebras) and to the specific pre-Heyting algebra of reducibility candidates
à la Girard for weak normalization.Then we prove, in Sec. 4 that we can extract from a
model valued on that precise pre-Heyting algebra, a model valued on a Heyting algebra that
allows to prove semantically cut elimination (Sec. 5). We finally discuss further extensions of
the present work, especially concerning normalization by evaluation algorithms it can raise.

2 Deduction modulo

Natural Deduction modulo [11] is an extension of Natural Deduction with rewrite rules on
terms and propositions. As in Natural Deduction, a theory is first defined by a language in
first order logic [21], composed of a set of variables, a set of function symbols and a set of
predicate symbols (all symbols given with their arities). Formulæ are then built-up from
predicates (called atomic formulæ), the usual connectives⇒, ∧, ∨ and the quantifiers ∀ and ∃.
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Given a language in predicate logic, a theory is defined not by axioms but by rewrite rules on
terms and formulæ. In this paper, we shall not focus on how to define such a rewrite system,
we will only consider the congruence relation on terms and formulæ it generates. The only
mandatory property is that the congruence relation has to be non-confusing, i.e. two formulæ
with different top connectives (or quantifiers) cannot be congruent (cut elimination does not
entail consistency for confusing theories, since a cut-free proof does not necessarily end with
an introduction rule). The principle of deduction modulo is to adapt the typing/deduction
rules of natural deduction, giving the ability to replace a formula by an equivalent one, at each
step of a typing derivation, as detailed in Fig. 1. We use the Curry-Howard correspondence
to express proof-terms of deduction modulo. Those proof-terms can contain both term
variables (written x, y, . . . , given by the language in predicate logic) and proof variables
(written α, β, . . . ). In the same way, terms are written t, u, . . . while proof-terms are written
π, ρ, . . . . Typing contexts Γ are sequences of labeled formulæ: α1 : A1, · · · , αn : An.

axiom, if α : A ∈ Γ and A ≡ B
Γ ` α : B
Γ, α : A ` π : B

⇒-intro, if C ≡ A⇒ B
Γ ` λα.π : C

Γ ` π : C Γ ` π′ : A ⇒-elim, if C ≡ A⇒ B
Γ ` (π π′) : B

Γ ` π : A Γ ` π′ : B ∧-intro, if C ≡ A ∧B
Γ ` 〈π, π′〉 : A ∧B

Γ ` π : C∧-elim1, if C ≡ A ∧B
Γ ` fst(π) : A

Γ ` π : C ∧-elim2, if C ≡ A ∧B
Γ ` snd(π) : B

Γ ` π : A∨-intro1, if C ≡ A ∨B
Γ ` i(π) : C

Γ ` π : B ∨-intro2, if C ≡ A ∨B
Γ ` j(π) : C

Γ ` π1 : D Γ, α : A ` π2 : C Γ, β : B ` π3 : C
∨-elim, if D ≡ A ∨B

Γ ` (δ π1 απ2 βπ3) : C

Γ ` π : B ⊥-elim, if B ≡ ⊥
Γ ` (δ⊥ π) : A

Γ ` π : A ∀-intro, if B ≡ ∀xA, and x /∈ FV (Γ)Γ ` λx.π : B
Γ ` π : B ∀-elim if B ≡ ∀xA, and C ≡ (t/x)A

Γ ` (π t) : C

Γ ` π : C ∃-intro if B ≡ ∃xA, and C ≡ (t/x)A
Γ ` 〈t, π〉 : B

Γ ` π : C Γ, α : A ` π′ : B
∃-elim, if C ≡ ∃xA, and x /∈ FV (Γ, B)

Γ ` (δ∃ π xαπ
′) : B

Figure 1 Intuitionistic natural deduction modulo

Each proof-term construction corresponds to a natural deduction rule: terms of the
form α express proofs built with the axiom rule, terms of the form λα π and (π π′) express
proofs built respectively with the introduction and elimination rules of the implication,
terms of the form 〈π, π′〉 and fst(π), snd(π) express proofs built with the introduction and
elimination rules of the conjunction, terms of the form i(π), j(π) and (δ π1 απ2 βπ3) express
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proofs built with the introduction and elimination rules of the disjunction, terms of the
form (δ⊥ π) express proofs built with the elimination rule of the contradiction, terms of the
form λx π and (π t) express proofs built with the introduction and elimination rules of the
universal quantifier and terms of the form 〈t, π〉 and (δ∃ π xαπ′) express proofs built with
the introduction and elimination rules of the existential quantifier.
We call neutral those proof-terms that are formed with an elimination rule or an axiom.

For example, in predicate logic with two 0-ary predicates P and Q, and in a theory
defined by a congruence relation ≡ such that P ≡ (Q⇒ Q), the proof-term λα.α is a proof
of P in the empty context, with the rules ⇒-intro and axiom as proof derivation.

Capture avoiding substitution in proof-terms is defined as usual. Notice that both term-
variables and proof-variables can be substituted respectively by terms and proof-terms. The
substitution of the variable x (resp. proof-variable α) by the term t (resp. proof-term π′) in
the proof-term π is written (t/x)π (resp. (π′/α)π).

Cut elimination in proof derivations is done, via the Curry-Howard correspondence, by
β-reduction on proof-terms. β-reduction is defined as the smallest contextual closure of the
following reduction rules (corresponding, respectively, to the elimination of a cut ⇒-e/⇒-i,
∧-e1/∧-i, ∧-e2/∧-i, ∨-e/∨-i1, ∨-e/∨-i2, ∀-e/∀-i and ∃-e/∃-i).

(λα.π1 π2) B (π2/α)π1

fst(〈π1, π2〉) B π1

snd(〈π1, π2〉) B π2

(δ i(π1) απ2 βπ3) B (π1/α)π2

(δ j(π1) απ2 βπ3) B (π1/β)π3

λx.π t B (t/x)π
(δ∃ 〈t, π1〉 αxπ2) B (t/x, π1/α)π2

Figure 2 Proof-term reduction rules

Let π be a proof-term. We write π B∗ π′ if π β-reduces to π′ in zero or more steps.
π is said in normal form if no reduction rule applies to π. It is weakly (resp. strongly)
normalizing if there exists a finite β-reduction sequence πB∗ π′ with π′ in normal form (resp.
all β-reduction sequences from π are finite). By extension, a theory is weakly (resp. strongly)
normalizing if all proof-terms that are proofs of formulæ of that theory, are weakly (resp.
strongly) normalizing. Since a step of cut elimination in a proof derivation corresponds to a
β-reduction step of the corresponding proof-term, one can prove syntactically that all weakly
normalizing theories satisfy the cut elimination property.
Finally, notice that β-reduction is confluent for all theories expressed in deduction modulo,
i.e. if π, π1, π2 are proof-terms such that πB∗ π1 and πB∗ π2 then there exists a proof-term
π′ such that π1 B∗ π′ and π2 B∗ π′.

3 Pre-Heyting algebras and pre-models

In [14], Dowek and Werner have generalized the Tait-Girard’s reducibility method, by
defining the notion of reducibility candidates for deduction modulo, namely pre-models,
whose existence is a sufficient condition for strong normalization. Later, Dowek exhibited
the notion of pre-Heyting algebras [10] (also known as pseudo-Heyting algebras or Truth
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Values Algebras) which is the underlying structure of those pre-models. Let us first recall
the definitions of those pre-Heyting algebras and of models valued on them.

3.1 (pre-) Heyting algebras
I Definition 1 (pre-Heyting algebra). Let B be a set, ≤ be a relation on B, A and E be
subsets of ℘(B), >̃, ⊥̃ be elements of B, ⇒̃, ∧̃, and ∨̃ be functions from B × B to B, ∀̃ be a
function from A to B and ∃̃ be a function from E to B.
The structure B = 〈B,≤,A, E , >̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is said to be a pre-Heyting algebra if

the relation ≤ is a pre-order,
⊥̃ is a minimum element,
>̃ is a maximum element,
for all a, b in B, a ∧̃ b is a greatest lower bound of a and b
and a ∨̃ b is a least upper bound of a and b,
∀̃ and ∃̃ are infinite greatest lower bound and least upper bound, respectively,
for all a, b, c in B, a ≤ b ⇒̃ c if and only if a ∧̃ b ≤ c.

Compared to [10], we drop the closure conditions that a ⇒̃ A and E ⇒̃ a are both in A.
This simplification is possible because we do not reason within Truth Values Algebras. See
[10] for more detailed definitions and explanations.

I Definition 2 (Heyting algebra). A pre-Heyting algebra is said to be a Heyting algebra if
the pre-order ≤ is antisymmetric and therefore an order.

3.2 Models
Let us define now the notion of model valued on a pre-Heyting algebra.

I Definition 3 (B-valued structure).
Let L = 〈fi, Pj〉 be a language in first order logic and B be a pre-Heyting algebra, a B-valued
structure for the language L, M = 〈M,B, f̂i, P̂j〉 is a structure such that f̂i is a function
from Mn to M where n is the arity of the function symbol fi and P̂j is a function from Mn

to B where n is the arity of the predicate symbol Pj .

I Definition 4 (Environments).
Given a B-valued structureM = 〈M,B, f̂i, P̂j〉, an environment is a function which associates
an element of M with each term variable.

I Definition 5 (Denotation). Let B be a pre-Heyting algebra,M a B-valued structure and
φ an environment. The denotation JAKMφ of a formula A inM is inductively defined from B
and φ as follows:

JxKMφ = φ(x),
Jf(t1, ..., tn)KMφ = f̂(Jt1KMφ , ..., JtnKMφ ),
JP (t1, ..., tn)KMφ = P̂ (Jt1KMφ , ..., JtnKMφ ),
J⊥KMφ = ⊥̃,
JA⇒ BKMφ = JAKMφ ⇒̃ JBKMφ ,
JA ∧BKMφ = JAKMφ ∧̃ JBKMφ ,
JA ∨BKMφ = JAKMφ ∨̃ JBKMφ ,
J∀x AKMφ = ∀̃ {JAKMφ+〈x,e〉 | e ∈M} when it is defined,
J∃x AKMφ = ∃̃ {JAKMφ+〈x,e〉 | e ∈M} when it is defined.
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I Remark. We omitM from JAKMφ when it is clear from context.
In all the pre-Heyting Algebras we consider in this paper, A and E at least contain all the
sets of the form {JAKφ+〈x,e〉 | e ∈M} so that JAKφ is always defined.
For any formula A, terms t, u and environment φ, we have J(t/x)AKφ = JAKφ+〈x,JtKφ〉 and
J(t/x)uKφ = JuKφ+〈x,JtKφ〉

I Definition 6 (Model). The B-valued structureM is said to be a model of a theory L,≡
if for all formulæ A and B and terms t and u such that A ≡ B and t ≡ u, and for all
environments φ, we have JAKφ = JBKφ and JtKφ = JuKφ.

3.3 Reducibility candidates and pre-models for weak normalization
The main idea of Tait-Girard’s reducibility method is to associate with each proposition A,
a set RA of strongly normalizing proof-terms, that verifies some reducibility conditions, and
then show the so-called adequacy lemma: all proof-terms that are proofs of some formula A
belong to RA and are therefore strongly normalizing. We adapt here this notion of reducibility
candidates to weak normalization. We shall write WN -reducibility candidates. We also write
“WN” the set of weakly normalizing proof-terms and “π isWN” when π ∈WN . A proof-term
is said to be neutral if it is of the form α, (π π′), fst(π), snd(π), (δ π1 απ2 βπ3), (π t) or
(δ∃ π1 αxπ2). A neutral proof-term is said to be isolated if all its reduction sequences end
with a neutral proof-term (those proof-terms are called hereditarily neutral in [20]).

I Definition 7 (Reducibility candidates for weak normalization).
A set R of proof-terms is a WN -reducibility candidate if and only if:
(P1) if π ∈ R, then π is weakly normalizing,
(P3a) if π is neutral and there exists π′ ∈ R such that π B π′, then π ∈ R.
(P3b) R contains all isolated weakly normalizing proof-terms.

If we compare this definition to usual reducibility candidates (see [17]), (CR1) becomes
(P1), stability by reduction (CR2) is not needed for our particular purpose of proving, via
semantic methods, the cut elimination property (albeit we shall see in section 5.1 that it could
be useful to impose this property), and we split the usual property (CR3) of reducibility
candidates into (P3a) and (P3b): (P3a) is the adaptation of (CR3) to weak normalization
but this no longer entails the non-emptiness of the considered set (a crucial point in the
proof of the adequacy lemma). (P3b) ensures that non-emptiness.

Let us now define the pre-Heyting algebra of WN -reducibility candidates.

I Definition 8 (Operations).
If E and F are sets of proof-terms, and F is a set of sets of proof-terms,

The sets >̃ and ⊥̃ are both the set of weakly normalizing proof-terms.
E ⇒̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing,
or there exists π1 such that π B∗ λα π1 and for all π′ ∈ E, (π′/α)π1 ∈ F .
E ∧̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing,
or there exists π1, π2 such that π B∗ 〈π1, π2〉, π1 ∈ E and π2 ∈ F .
E ∨̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing,
or there exists π1 such that π B∗ i(π1) (resp. j(π1)) and π1 ∈ E (resp. F ).
∀̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing, or
there exists π1 such that π B∗ λx π1 and for all terms t and G ∈ F , (t/x)π1 is in G.
∃̃ F is the set of proof-terms π such that either π is isolated and weakly normalizing, or
there exists π1, G ∈ F and a term t such that π B∗ 〈t, π1〉 and π1 ∈ G.
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I Remark. We could also have left ⊥̃ be the smallest (for inclusion) reducibility candidate,
i.e. the set of isolated weakly normalizing terms. But since we are going to choose the trivial
pre-order, there is no particular reason to do so.

I Lemma 9. The set of WN -reducibility candidates is closed by the operations of Def. 8.

We can first remark that the set WN is a WN -reducibility candidate. Moreover, if E,F are
WN -reducibility candidates and F is a set of WN -reducibility candidates, E ⇒̃ F , E ∧̃ F ,
E ∨̃ F , ∀̃ F and ∃̃ F contains all isolated weakly-normalizing proof-terms by definition hence
those sets satisfy (P3b).

⇒̃) (P1) Let π ∈ E ⇒̃ F . Either π is isolated and weakly normalizing. Or there exists π1
such that π B∗ λα π1 and for all π′ ∈ E, (π′/α)π1 ∈ F . Since E satisfies (P3b), we have
α ∈ E, hence π1 ∈ F ⊆WN, since F satisfies P1 and so do λα.π1 and finally π.
(P3a) Let π be a neutral proof-term and π′ ∈ E ⇒̃ F such that π B π′. If π′ is isolated
and WN, then π ∈WN and is also isolated, by confluence. Otherwise πB π′B∗ λα.π1 with
(π′′/α)π1 ∈ F for all π′′ ∈ E. In both cases, π ∈ E ⇒̃ F .

∧̃) (P1) Let π ∈ E ∧̃ F . Either π is isolated and weakly normalizing. Or there exists π1, π2
such that π B∗ 〈π1, π2〉 with π ∈ E ⊆WN and π2 ∈ F ⊆WN, hence π ∈WN.
(P3a) Let π be a neutral proof-term and π′ ∈ E ∧̃ F such that π B π′. If π′ is isolated
and WN, then π ∈WN and is also isolated, by confluence. Otherwise π B π′ B∗ 〈π1, π2〉
with π1 ∈ E and π2 ∈ F . In both cases, π ∈ E ∧̃ F .

∨̃) (P1) Let π ∈ E ∨̃ F . Either π is isolated and weakly normalizing. Or there exists π1
such that π B∗ i(π1) (resp. j(π1)) with π1 ∈ E (resp. F ). Since E and F satisfy (P1),
we have π ∈WN .
(P3a) Let π be a neutral proof-term and π′ ∈ E ∨̃ F such that π B π′. If π′ is isolated
and WN, then π ∈WN and is also isolated, by confluence. Otherwise πB π′ B∗ i(π1) (resp.
j(π1)) with π1 ∈ E (resp. F ). In both cases, π ∈ E ∨̃ F .

∀̃) (P1) Let π ∈ ∀̃F . Either π is isolated and weakly normalizing. Or there exists π1 such
that π B∗ λx π1 and for all terms t and sets G ∈ F , (t/x)π1 ∈ F . Since each G ∈ F
satisfies (P1), we have, in particular, π1 = (x/x)π1 ∈WN, and so do λx.π1 and finally π.
(P3a) Let π be a neutral proof-term and π′ ∈ ∀̃F such that π B π′. If π′ is isolated and
WN, then π ∈WN and is also isolated, by confluence. Otherwise π B π′ B∗ λx.π1 with
(t/x)π1 ∈ G for all terms t and G ∈ F . In both cases, π ∈ ∀̃F .

∃̃) (P1) Let π ∈ ∃̃F . Either π is isolated and weakly normalizing. Or there exists π1, G ∈ F
and a term t such that π B∗ 〈t, π1〉 with π1 ∈ G. Hence π1 ∈WN and so does π.
(P3a) Let π be a neutral proof-term and π′ ∈ ∃̃F such that π B π′. If π′ is isolated and
WN, then π ∈WN and is also isolated, by confluence. Otherwise π B π′ B∗ 〈t, π1〉 with π1
in some G ∈ F . In both cases, π ∈ ∃̃F .

I Definition 10 (The algebra of WN -reducibility candidates).
The set B is the set of WN -reducibility candidates. The sets A and E are ℘(B) (the powerset
of B). The operations are those of Def. 8. The pre-order is the trivial pre-order, i.e. a ≤ b
for any a, b ∈ B.

Notice that the existence of a model valued on this pre-Heyting algebra for some theory can
be obtained by super-consistency [10] since this pre-Heyting algebra is full, ordered (using
the inclusion) and complete.
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Syntactic proof of (weak normalization and) cut elimination
In the following, we show how to adapt the usual reducibility method ([14] and [8, 9] for
deduction modulo) to prove that the existence of a model valued on the pre-Heyting algebra
of WN-reducbility candidates entails weak normalization (and therefore, syntactically, cut
elimination) for the considered theory in deduction modulo.
We suppose that the denotation J.K. of a theory forms a model valued on the pre-Heyting
algebra of WN-reducibility candidates in the sense of Def. 6.

As usual, we work with proof-terms substitutions adapted to a typing context, that we
call assignments.

I Definition 11 (Assignments on a typing context). Given a typing context Γ and an
environment φ, an assignment is a proof-term substitution σ such that for all declarations
α : A in Γ, we have σα ∈ JAKMφ . When it is clear from context, we may not precise the
typing context on which some assignment is defined.

I Lemma 12 (Adequacy lemma).
For all typing contexts Γ, formulæ A, environments φ, term substitutions θ, proof-terms π,
and assignments σ on Γ,

if Γ ` π : A then σθπ ∈ JAKφ.

Proof. By induction on the length of the derivation of Γ ` π : A. By case analysis on the
last rule.

If the last rule is axiom, then π is a variable α and there exists some formula B ≡ A and
a declaration α : B in Γ. By hypothesis on the assignment, σθα = σα ∈ JBKφ = JAKφ
since J.K. is a model.
If the last rule is ⇒-intro, then π is an abstraction λα.ν (we can suppose that α is
not in the domain of σ by α-renaming), and there exists formulæ B and C such that
A ≡ B ⇒ C and Γ, α : B ` ν : C (with a smaller derivation). For all µ ∈ JBKφ, (µ/α)σ is
an assignment on Γ, α : B hence by induction hypothesis (µ/α)θσν ∈ JCKφ. Finally, by
Def. 8, σθπ = λα.σθν ∈ JBKφ⇒̃JCKφ = JB ⇒ CKφ = JAKφ.
If the last rule is ⇒-elim, then π is an application (µ ν), and there exists formulæ B

and C such that Γ ` µ : C, Γ ` ν : B (with smaller derivations), and C ≡ B ⇒ A.
By induction hypothesis, we have σθµ ∈ JCKφ = JB ⇒ AKφ = JBKφ⇒̃JAKφ and σθν ∈
JBKφ. Either σθµ is isolated and weakly normalizing (since it belongs to JCKφ), then
so is σθπ = σθ(µ ν) = (σθµ σθν) which therefore belongs to JAKφ by (P3b). Or there
exists α and π1 such that σθµB∗ λα.π1 and (σθν/α)π1 ∈ JAKφ since σθµ ∈ JBKφ⇒̃JAKφ.
Finally σθπ = (σθµ σθν) ∈ JAKφ since it is neutral and it reduces to (σθν/α)π1 ∈ JAKφ
(by a repeated use of (P3a)).
Proofs of the other cases follow the same scheme.

J

In the following, we shall bypass that method and make appear an underlying Heyting
algebra structure from WN-reducibility candidates in order to provide a full semantic proof
that the existence of a model valued on WN-reducibility candidates entails cut elimination.

4 A Heyting algebra

Pre-Heyting Algebras can easily be turned into Heyting Algebras [10] by a quotient operation,
but this is of no help here since with the algebra of Definition 10 we obtain a one-point (i.e.
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trivial) Heyting Algebra. In order to achieve our purpose and extract a non-trivial Heyting
algebra from our structure of pre-models for weak normalization, we interpret propositions
by sets of contexts (outer values) given by this notion of pre-model and we show that it
forms a Heyting Algebra with well chosen operations.
For the following, we consider a theory in deduction modulo and we suppose that there
exists a modelM, valued on the pre-Heyting algebra of WN -reducibility candidates, for that
theory. We write J.KM for the denotation it defines.

4.1 Outer value
Notice that the algebra we are to build contains sets of contexts (i.e. sequences of unlabeled
formulæ) and not typing contexts. We say that a typing context ∆ is a labeling of a context
Γ = A1, . . . , An if there exists proof-variables α1, . . . , αn such that ∆ = α1 : A1, . . . , αn : An.

I Definition 13 (Outer Value). Let A be a formula. We define its weak outer value bAc as
the set of contexts Γ such that there exists a labeling ∆ of Γ and a proof-term π with:

∆ ` π : A
for any environment φ, any term-substitution θ, any assignment σ on ∆, σθπ ∈ JAKMφ

I Lemma 14. For all formulæ A, B and contexts Γ, we have
A ∈ bAc
Γ ∈ bAc implies Γ, B ∈ bAc
bAc = bBc if A ≡ B.

Proof. Each point is treated separately and is straightforward.
Because the labeling α : A and the proof α : A ` α : A verify Def. 13.
If ∆ is a labeling of Γ, π is a suitable proof-term and β is a fresh proof variable, the
typing context Γ, β : B and the proof Γ, β : B ` π : A verify Def. 13.
From Def. 6, the same proof-terms are JAKM and JBKM. Moreover, if Γ ` π : A then
Γ ` π : B is an easy property of Deduction modulo [14].

J

In the following, for all (unlabeled) contexts Γ, proof-terms π and formulæ A, we shall write
Γ ` π : A if there exists a labeling ∆ of Γ such that ∆ ` π : A.

4.2 The algebra
With the help of Def. 13 we can now define a Heyting algebra:

I Definition 15 (Heyting algebra Ω).
We define Ω to be the set containing all the bAc for any formula A. It is ordered by inclusion.
A and E are both equal to the set of all {b(t/x)Ac | t ∈ T } for any formula A, where T is
the set of open terms. We define the operations and constants to be:

⊥̌ = b⊥c
>̌ = b⊥ ⇒ ⊥c
bAc ∧̌ bBc = bA ∧Bc
bAc ∨̌ bBc = bA ∨Bc
bAc ⇒̌ bBc = bA⇒ Bc
∀̌ {b(t/x)Ac | t ∈ T } = b∀xAc
∃̌ {b(t/x)Ac | t ∈ T } = b∃xAc
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I Remark. This definition should formally appear below Lem. 16 and 17, and not just above.
Indeed, those lemmata ensure that the introduced operators are well-defined, and do not
depend on them. However, we believe that presenting first Def. 15 is more natural.
To show that Def. 15 defines a Heyting algebra, we first prove that ∧̌ is set intersection.

I Lemma 16. For any formulæ A and B, bAc ∧̌ bBc = bAc ∩ bBc.

Proof.
bAc ∩ bBc ⊆ bA ∧Bc: Let Γ ∈ bAc ∩ bBc. Let π1 and π2 be proof-terms verifying the
conditions of Def. 13. Since Γ ` π1 : A and Γ ` π2 : B, we have Γ ` 〈π1, π2〉 : A ∧ B.
We claim that 〈π1, π2〉 is a suitable proof-term that verifies the conditions of Def. 13:
let φ be an environment, σ be an assignment and θ be a term-substitution. Then
σθ〈π1, π2〉 = 〈σθπ1, σθπ2〉 and, since by Def. 13 σθπ1 ∈ JAKMφ and σθπ2 ∈ JBKMφ , we get
by Def. 8 that 〈σθπ1, σθπ2〉 ∈ JA ∧BKMφ .
bA ∧Bc ⊆ bAc ∩ bBc: we show only bA ∧Bc ⊆ bAc since the other inclusion has exactly
the same proof. Let Γ ∈ bA ∧Bc and let π be a proof-term that verifies the conditions
of Def. 13. Then Γ ` fst(π) : A and we claim that fst(π) is a suitable proof-term:
let φ be an environment, σ be an assignment and θ be a term-substitution. Then
σθfst(π) = fst(σθπ). By hypothesis, σθπ ∈ JA ∧BKMφ and according to Def. 8 we have
two choices. If σθπ is WN isolated, then so is fst(σθπ) and then fst(σθπ) ∈ bAc by
(P3b). Otherwise, σθπ B∗ 〈π1, π2〉 (σθπ cannot reduce to a non neutral term of another
form since the theory is not confusing and the types of β-equivalent proof-terms are
equivalent). with π1 ∈ JAKMφ and π2 ∈ JBKMφ . Then we have the following sequence:

fst(σθπ) B∗ fst(〈π1, π2〉) B1 π1

Since every term but the last in this reduction sequence is neutral, we conclude by a
repeated use of (P3a) that fst(σθπ) ∈ JAKMφ .

J

We check now that Def. 15 does define a Heyting algebra (sinceM is a model valued on the
pre-Heyting algebra of WN -reducibility candidates).

I Lemma 17. The constants ⊥̌ , >̌ and the operators ∧̌ , ∨̌ , ⇒̌ , ∀̌ , ∃̌ are operators of a
Heyting algebra, the order being inclusion.

Proof. We check one by one each operator:
>̌ is the greatest element. Let bCc ∈ Ω and Γ ∈ bCc. Then Γ ` λα.α : ⊥ ⇒ ⊥
and to show Γ ∈ b⊥ ⇒ ⊥c we claim that λα.α is a suitable proof-term that verifies
the conditions of Def. 13. Let φ be an environment, σ be an assignment and θ be a
term-substitution. σθ(λα.α) = λα.α and λα.α ∈ J⊥ ⇒ ⊥KMφ by Def. 8 since for any
π′ ∈ J⊥KMφ , (π′/α)α = π′ ∈ J⊥KMφ .

⊥̌ is the least element. Let bAc ∈ Ω, let Γ ∈ b⊥c and π be a proof term verifying the
conditions of Def. 13. Then Γ ` (δ⊥ π) : A and we claim that (δ⊥ π) is a suitable
proof-term (Def. 13). Let φ be an environment, σ be an assignment and θ be a term-
substitution. σθ(δ⊥ π) = δ⊥ σθπ is isolated since there is no δ⊥ reduction rule and it is
WN since σθπ is WN by hypothesis on π. So Γ ∈ bAc.
bA ∧Bc is the greatest lower bound of bAc and bBc follows directly from Lemma 16 and
the fact that set intersection is the greatest lower bound for set inclusion.
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bA ∨Bc is the least upper bound of bAc and bBc:
bAc ⊆ bA ∨Bc. Let Γ ∈ bAc and π a proof-term verifying the conditions of Def. 13.
Then Γ ` i(π) : A ∨ B and we claim that i(π) is a suitable proof-term. Let φ be an
environment, σ be an assignment and θ be a term-substitution. σθi(π) = i(σθπ) and
we know by hypothesis that σθπ ∈ JAKMφ . By Def. 8, i(σθπ) ∈ JA ∨BKMφ .
bBc ⊆ bA ∨Bc has exactly the same proof.
if bAc ⊆ bCc and bBc ⊆ bCc then bA ∨Bc ⊆ bCc. Let C be a formula such that
bAc ⊆ bCc and bBc ⊆ bCc, let Γ ∈ bAc and let π be the proof-term verifying the
conditions of Def. 13 such that Γ ` π : A ∨B. We show that Γ ∈ bCc.
By Lem. 14 A ∈ bAc ⊆ bCc and Γ, A ∈ bCc. Let π1 be the proof-term verifying the
conditions of Def. 13 such that Γ, α : A ` π1 : C. Analogously let π2 be the suitable
proof-term such that Γ, β : B ` π2 : C. We build the proof:

Γ, α : A ` π1 : C Γ, β : B ` π2 : C Γ ` π : A ∨B
∨-elimΓ ` (δ π απ1 βπ2) : C

We claim that (δ π απ1 βπ2) is a suitable proof-term. Let φ be an environment, σ be
an assignment and θ be a term-substitution. Up to an α-renaming of α, β we have
σθ(δπ απ1 βπ2) = (δ σθπ ασθπ1 βσθπ2). σθπ ∈ JA ∨BKMφ . If σθπ is WN isolated,
then so is σθ(δ π απ1 βπ2) and this proof-term belongs to JCKMφ by (P3b). Otherwise,
following Def. 8, assume that σθπ B∗ i(π′) with π′ ∈ JAKMφ (the other case is similar).
Then we have the reduction sequence:

σθ(δ π απ1 βπ2) B∗ (δ i(π′) ασθπ1 βσθπ2) B (π′/α)σθπ1

Since π′ ∈ JAKMφ , (π′/α)σ = σ+ (π′/α) is an assignment on Γ, α : A and by hypothesis
on π1 (π′/α)σθπ1 ∈ JCKMφ . Every term but the last in the above reduction sequence
is neutral, so we conclude by a repeated use of (P3a) that σθ(δ π απ1 βπ2) ∈ JCKMφ .

bA⇒ Bc is an implication operator. From Def. 1 (see also [22]) we must check:

bAc ≤ bBc ⇒̌ bCc iff bAc ∧̌ bBc ≤ bCc

if part: by Lem. 16 we can assume bAc ∩ bBc ⊆ bCc. Let Γ ∈ bAc. By Lem. 14,
Γ, B ∈ bAc ∩ bBc, so by hypothesis, Γ, B ∈ bCc. Let π be the proof-term verifying
the conditions of Def. 13 such that Γ, α : B ` π : C. Then Γ ` λα.π : B ⇒ C and we
claim that λα.π is a suitable proof-term (Def. 13). Let φ be an environment, σ be an
assignment, θ be a term-substitution and assume without loss of generality that α is
fresh, so that σθλα.π = λα.σθπ. Let π′ ∈ JBKMφ , then, by Def. 8, we must show that
(π′/α)σθπ = (σ + (π′/α))θπ ∈ JCKMφ but this is immediate by hypothesis on π.
only if part: by Lem. 16, let Γ ∈ bAc ∩ bBc. By hypothesis, Γ ∈ bBc ⇒̌ bCc =
bB ⇒ Cc. Let π and πB the proof-terms verifying the conditions of Def. 13 such that
Γ ` π : B ⇒ C and Γ ` πB : B. We have Γ ` (π πB) : C and we claim that (π πB) is a
suitable proof-term (Def. 13). Let φ be an environment, σ be an assignment and θ be
a term-substitution. σθπ ∈ JB ⇒ CKMφ by hypothesis. If it is WN isolated, then so is
σθ(π πB) and therefore it belongs to JCKMφ . Otherwise, following Def. 8, assume that
σθπ B∗ λαπ1 with π1 verifying the associated hypothesis. Then we have the reduction
sequence:

σθ(π πB) B∗ λα.π1 σθπB B (σθπB/α)π1

By hypothesis on π1 and since σθπB ∈ JBKMφ , (σθπB/α)π1 ∈ JCKMφ , and by a repeated
use of (P3a), σθ(π πB) ∈ JCKMφ .



12 A semantic proof that reducibility candidates entail cut elimination

b∀xAc is the greatest lower bound of the set {b(t/x)Ac | t ∈ T }:
if for any t, bCc ⊆ b(t/x)Ac then bCc ⊆ b∀xAc. Let Γ ∈ bCc. In particular, assuming
without loss of generality that x is fresh, Γ ∈ b(x/x)Ac. Let π be the proof-term that
verifies the conditions of Def. 13. Then Γ ` λx.π : ∀xA, and we claim that λx.π is a
suitable proof-term. Let φ be an environment, σ be an assignment and θ be a term-
substitution. Assuming for simplicity that x does not appear in σθ, σθλx.π = λx.σθπ,
and we show that for any term t and any d ∈ M , (t/x)σθπ ∈ JAKMφ+(d/x). This is
immediate by hypothesis on π, applied to the environment φ+ (d/x), the assignment
σ and the term-substitution θ + (t/x).
b∀xAc ⊆ b(t/x)Ac for any t: let Γ ∈ b∀xAc, and let π a proof-term that veri-
fies the conditions of Def. 13. Then Γ ` (π t) : (t/x)A and we claim that (π t)
is a suitable proof-term. Let φ be an environment, σ be an assignment and θ

be a term-substitution. If σθπ is WN isolated then so is σθ(π t) and this proof-
term belongs to J(t/x)AKMφ . Otherwise, σθπ B∗ λx.π1 and (u/x)π1 ∈ JAKMφ+(d/x) for
any term u and any d ∈ M , in particular for θt and JtKMφ . Thus, by remark 3.2,
(θt/x)π1 ∈ J(t/x)AKMφ and by a repeated use of (P3b), σθ(π t) ∈ J(t/x)AKMφ .

b∃xAc is the least upper bound of the set {b(t/x)Ac | t ∈ T }:
b(t/x)Ac ⊆ b∃xAc for any t: let t be a term, Γ ∈ b(t/x)Ac and let π a proof-term that
verifies the conditions of Def. 13. Then Γ ` 〈t, π〉 : ∃xA and we claim that 〈t, π〉 is a
suitable proof-term (Def. 13). Let φ be an environment, σ be an assignment and θ
be a term-substitution. σθ〈t, π〉 respects the condition of Def. 8 since it is such that
σθπ ∈ J(t/x)AKMφ = JAKMφ+JtKM

φ
by hypothesis and remark 3.2.

if, for any t, b(t/x)Ac ⊆ bCc, then b∃xAc ⊆ bCc: Let Γ ∈ b∃xAc. In particular,
assuming without loss of generality that x is fresh, b(x/x)Ac ⊆ bCc, and by Lem. 14
we have Γ, A ∈ bCc. Let π and π′ be the proof-terms verifying the conditions of Def.
13 such that Γ ` π : ∃xA and Γ, α : A ` π′ : C, with α a fresh proof variable. We build
the proof:

Γ ` π : ∃xA Γ, α : A ` π′ : C
Γ ` (δ∃ π xαπ′) : C

We claim that (δ∃ π xαπ′) is a suitable proof-term (Def. 13). Let φ be an environment,
σ be an assignment and θ be a term-substitution. If σθπ is WN isolated, then so is
σθ(δ∃ π xαπ′) and this proof-term belongs to JCKMφ . Otherwise σθπ B∗ 〈t1, π1〉 and
π1 ∈ JAKMφ+(d/x) for some d ∈M . Assuming for simplicity that x and α do not appear
in σ nor in θ:

σθ(δ∃ π xαπ′) B∗ δ∃ 〈t1, π1〉 xαπ′ B (t/x, π1/α)σθπ′

Since σ + (π1/α) is a suitable assignment (adapted to the environment φ+ (d/x)), we
have, by hypothesis on π, (σ + (π1/α))(θ + (t/x))π′ ∈ JCKMφ+(d/x) = JCKMφ so, that by
a repeated use of (P3a) we conclude that σθ(δ∃ π xαπ′) ∈ JCKMφ .

J

We can conclude finally that Ω is a Heyting algebra when M is a model valued on the
pre-Heyting algebra of WN -reducibility candidates1. We shall see now how it allows to prove
the cut elimination property for the considered theory.

1 We can also show that it is not trivial ( >̌ 6= ⊥̌ ) but for this we need Thm. 21 that follows, to show,
for instance, that the empty context does not belong to ⊥̌
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5 Model and cut elimination

We continue to suppose that we have a theory, defined by a language 〈fi, Pj〉 and a congruence
relation ≡, that has a model valued on the pre-Heyting algebra ofWN -reducibility candidates.
We build a model valued on the Heyting algebra Ω of the previous section and we prove that
the existence of such a model implies the cut elimination property.

I Definition 18 (Heyting algebra model interpretation).
We define D as the Ω-valued structure 〈T ′,Ω, f̂i, P̂j〉 where:
T ′ is the set of classes modulo ≡ of open terms (the class of t is denoted t),
for any n-ary function symbol f : f̂D(t1, ..., tn) = f(t1, ..., tn),
for any n-ary predicate symbol P : P̂D(t1, ..., tn) = bP (t1, ..., tn)c.

The last definition is well-formed since the function t1, ..., tn 7→ bP (t1, ..., tn)c is constant on
classes of terms modulo ≡.

As explained in the following lemma, b.c is the denotation generated by Def. 18.

I Lemma 19. For all terms t, formulæ A, assignments φ taking their values in T ′, and
substitutions σ such that σ(x) = φ(x) for any variable x, we have JtKDφ = σt and JAKDφ = bσAc.

Proof. By structural induction on t and then A. There is a little subtlety in the case of
quantifiers. Let us process the ∀ case, assuming that x is a fresh variable symbol:

J∀x AKDφ = ∀̃{JAKDφ+(t/x) | t ∈ T ′}
= ∀̃{b(σ + (t/x))Ac | t ∈ T ′} = ∀̃{b(σ + (t/x))Ac | t ∈ T }
= bσ∀x Ac

The first equality is the definition of a model interpretation, the second comes by induction
hypothesis, the last one is an application of Lem. 17, those steps are standard. Lem. 14
justifies the third equality on the second line: instead of having only one representative of
the class t, we can consider them all. J

I Lemma 20. Let t1 ≡ t2 be two terms, A ≡ B be two formulæ and φ be an assignment
taking its values in T ′. Then Jt1K

D
φ = Jt2K

D
φ and JAKDφ = JBKDφ .

Proof. Let σ be a substitution fulfilling the hypothesis of Lem. 19. Then σt1 ≡ σt2, and
σt1 = σt2 and the result follows by Lem. 19. Similarly, σA ≡ σB, bσAc = bσBc by Lem. 14
and the result follows by Lem. 19. J

Hence the model interpretation given by Def. 18 is adapted to the congruence ≡. And we
finally get the cut-elimination theorem:

I Theorem 21. If the sequent Γ ` A has a proof, then there exists a weakly normalizable
proof of this sequent.

Proof. We let JΓKD =
⋂
{JAKD | A ∈ Γ} and bΓc =

⋂
{bAc | A ∈ Γ}. By usual soundness

w.r.t. Heyting algebras, JΓKD ⊆ JAKD. Lem. 14 implies Γ ∈ bΓc = JΓKD, so Γ ∈ JAKD = bAc
and by Def. 13 there exists a proof-term π0 such that Γ ` π0 : A and, in particular,
π0 ∈ JAKMφ for any φ. Therefore, π0 is weakly normalizable. J
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5.1 Towards normalization by evaluation
In order to obtain some algorithm of normalization by evaluation, we need to strengthen
the result of Thm. 21. First we need to obtain some proof in normal form, instead of, in
Thm. 21, a weakly normalizable proof:

if Γ ` A has a proof then Γ ` A has a proof in normal form. (E1)

Then we need to relate this proof in normal form to the original one:

if Γ ` A has a proof π then Γ ` A has a proof in normal form π0 with π B∗ π0. (E2)

Let us see how to obtain (E1). We shall discuss about how to obtain (E2) in the conclusion.
In order to obtain (E1) we refine Def. 13 as follows:

I Definition 22 (strong outer value). Let A be a formula. We let bAc be the set of contexts
Γ such that there exists some proof term π in normal form such that:

Γ ` π : A
for any environment φ, any assignment σ and any term-substitution θ, σθπ ∈ JAKMφ .

We need, in that case, WN -reducibility candidates that satisfy stability by β-reduction
(the (CR2) property of usual reducibility candidates), as we shall see in the following. The
algebra B contains WN -reducibility candidates (Def. 10) that do not enjoy stability by
β-reduction. But we can build a sub-algebra B′ that only contains sets of proof-terms that
are stable by β-reduction.

I Lemma 23 (Stability by reduction). Let B′ be the smallest set of reducibility candidates
closed by the operations of Def. 8. Let E be a member of B′, π and π′ be proof-terms. If
π ∈ E and π B∗ π′, then π′ ∈ E.

Proof. By induction on the construction of E. If E = >̃ or E = ⊥̃, this is immediate.
Assume E = F ⇒̃ G. If π is WN isolated, then so is π′ (it is WN by confluence). Otherwise,
π B∗ λα.π1. By confluence, π′ B∗ λα.π′1 with π1 B∗ π′1. Let π2 ∈ F . (π2/α)π1 ∈ G by
definition of π1 and (π2/α)π1 B∗ (π2/α)π′1. So by induction hypothesis, (π2/α)π′1 ∈ G, and
π′ ∈ F ⇒̃ G. The other cases are handled similarly. J

This algebra B′ is also full, ordered and complete so that we can also use super-consistency
to build a model interpretation in it.
With this new algebra B′, Lem. 14 and 17 hold without effort. We only need to reformulate
the cases of Lem. 17.
Let us process a key case as an example: bAc ≤ bBc ⇒̌ bCc only if bAc ∧̌ bBc ≤ bCc.
Let Γ ∈ bAc ∩ bBc. We build the proof:

Γ ` π : B ⇒ C Γ ` πB : B
Γ ` π πB : C

with π ∈ JB ⇒ CKM and πB ∈ JBKM, so that both are in normal form. However, (π πB)
may not be in normal form. If this is not the case it means that π = λα.π1. π is not isolated
and by Def. 8 there exists π′1 such that π B∗ λα.π′1 and (πB/α)π′1 ∈ JCKM. Let πC the
normal form of (πB/α)π′1.

Since σθ(π π′) ∈ JCKM (exactly as in Lem. 17), and σθ(π π′) B∗ σθπC , we have by
Lem. 23 (so by stability by reduction) σθπC ∈ JCKM and πC is the proof-term we wanted.

Now, Thm.21 will produce proof-terms in normal form.
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6 Conclusion and further work

In this paper, we have defined a notion of pre-models for weak normalization of theories
expressed in intuitionistic natural deduction modulo. This notion of pre-model is defined as
a model on a specific pre-Heyting algebra. To prove that the existence of such a pre-model
implies cut elimination for the considered theory, we do not use the usual syntactic way,
but we extract from such a pre-model, a (regular) model valued on some Heyting algebra,
which implies cut elimination via the usual soundness/strong completeness paradigm. In
the following, we discuss how to extend this result to obtain, in the same way, first weak
normalization of the considered theory, and secondly a normalization by evaluation algorithm.

Thm. 21, does not state that all proofs of the sequent Γ ` A are weakly normalizable,
but the fact that if this sequent is provable (by a proof-term π), then there exists a weakly
normalizable proof π0 (or in normal form in Sec. 5.1) of that sequent. We have seen, in the
previous section how to obtain that π0 is not only weakly normalizable but also in normal
form. But how to relate π0 to π in order to obtain, first, a semantic proof thatWN -reducibility
candidates entail weak normalization, and second, a normalization by evaluation algorithm?

Indeed, in our construction, we have split the usual adequacy lemma [14] in two parts: the
appeal to the proof-term and an inductive argument is handled by the soundness theorem,
and the inductive cases, that are handled by Lem. 17. This way, we get rid of the original
proof-term π and we have no way to get it back.

But if we formalize this algorithm, in Coq for instance, π will lift from the syntactic level
towards the proof-assistant level. So it will be saved, and eventually be re-used to produce
π0 in Def. 13. However, there is still no way to show that π0 is the normal form of π, unless
we examine Coq’s proof-term itself.

In order to enforce this, we would have to embed π at a lower level, as a justification of
the fact that bΓc ⊆ bAc in the model, and to carry it in every proposition, especially Lem.
17.

It should be instructing to compare this approach to other normalization by evaluation
approaches [1, 2, 4, 6, 7], in particular because they are all based on a Kripke-like structure,
whereas in this paper we meet a pure Heyting algebra structure. Perhaps transforming
Heyting algebras into Kripke structures [22], or a reverse operation like the one of [19] will
help in this matter. Also, since Kripke worlds are formed of contexts, the presence of contexts
in outer values should be a hint that such a transformation is possible.
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