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Double-Negation Translations

Double-Negation translations:
» a shallow way to encode classical logic into intuitionistic
» Zenon’s backend for Dedukti

» existing translations: Kolmogorov’s (1925), Gentzen-Gddel’s (1933),
Kuroda’s (1951), Krivine’s (1990), - - -

Minimizing the translations:
» turns more formulae into themselves;
» shifts a classical proof into an intuitionistic proof of the same formula.
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Morphisms

» A morphism preserves the operations between two structures:

(Z,+,0) > (R*x*1)
Group morphism: { h(0) - 1
h(a+b) — h(a)=h(b)

» atranslation that is a morphism:

h(P) = P
h(AAB) = h(A)A h(B)
h(Av B) = h(A)v h(B)
h(A = B) = h(A) = h(B)
h(vxA) = V¥ xh(A)
h(IxA) = 3 x h(A)

(of course this is the identity)
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Morphisms
» A morphism preserves the operations between two structures:

(Z,4,0) —» (R* 1)
Group morphism: { h(0) - 1
h(a+b) — h(a)=h(b)

» a more interesting translation that is a morphism:
h(P) = P
h(AAB) = h(A)A: h(B)
h(Av B) = h(A) v, h(B)
h(A = B) = h(A) = h(B)
h(VxA) = V:x h(A)
h(IxA) = 3A.x h(A)

two kinds of connectives: the classical and the intuitionistic ones.

O. Hermant (Mines) Double Negations December 12, 2014

3/31



Morphisms
» A morphism preserves the operations between two structures:

(Z,4,0) —» (R* 1)
Group morphism: { h(0) - 1
h(a+b) — h(a)=h(b)

» a more interesting translation that is a morphism:
h(P) = P
h(AAB) = h(A)A: h(B)
h(Av B) = h(A) v, h(B)
h(A = B) = h(A) = h(B)
h(VxA) = V:x h(A)
h(IxA) = 3A.x h(A)

two kinds of connectives: the classical and the intuitionistic ones.

» Design a unified logic, where we can reason both classically and
intuitionistically:
M A strange premises
FAV;B r-AveB
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Translations that are Morphisms

» None of the previous translations is a morphism.
» Dowek has shown one, it is very verbose.
» We make it lighter.

Plan:

@ Classical and Intuitionistic Logic
@ Sequent Calculus

© Double Negation Translations
© Morphisms

O. Hermant (Mines) Double Negations December 12, 2014

4/31



Classical vs. Intuitionistic
» The principle of excluded-middle. Should

AV -A

be provable ? Yes orno ?
» Yes. This is what is called classical logic.
» Wait a minute !

The Drinker’s Principle
In a bar, there is somebody such that, if he drinks, then everybody drinks. )

Two Irrationals

There exists iy, io € R\Q such that i? € Q.

IRL: A Manicchean World

You are with us, or against us (G. W. Bush)
Rashomon (A. Kurosawa)

V.
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Classical vs. Intuitionistic
» The principle of excluded-middle. Should
AvV-A

be provable ? Yes or no ?
» No. This is the constructivist school (Brouwer, Heyting, Kolmogorov).
» Intuitionistic logic is one of those branches. It features the BHK
interpretation of proofs:
Witness Property
A proof of AxA (in the empty context) gives a witness t for the property A. )

Disjunction Property

A proof of A Vv B (in the empty context) reduces eventually either to a proof
of A, or to a proof of B.

v
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The Classical Sequent Calculus (LK)

NnA,Br A

NMAABFA

LAFA

AL

BrA

NAVBFA
MN-AA

BrA

NA=B+rA
A A

L-ArA &
MA[c/x]+ A

IxArA

MA[t/x]+ A

VYXAFA
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Vi

MN-AA

M B,A AR

N-A=BA

I A[t/x], A

I Ale/x], A

N-AABA

N-AB,A

— Ty
rFAvB,A ¢

NArB A
=R

MNAEFA

FroAA

FraxA A ¢

FTrvxA, A ¢
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The Intuitionistic Sequent Calculus (LJ)

T.ArA ¥
rABrA A re8
TAABFA 't F-AAB R
MNArFA I',BI-AV MrN-A . B Vs
AVBrA t rFAvB TFrAvVB
A BrA _ rArB R
TA=BFrA - A= B A
Mr-A - MLAF .
N-ArA Mr-A
M Ale/x]+r A I+ Aft/x] 3
LAXAr A © M F XA R
FLA[t/X]FA I+ Ale/x] y
TVXArA - M F VXA R
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Note on Frameworks

v

structural rules are not shown (contraction, weakening)

v

left-rules seem very similar in both cases

v

so, Ihs formulze can be translated by themselves

v

this accounts for polarizing the translations
» another work [Boudard & HJ:

* does not behave well in presence of cuts
* appeals to focusing techniques
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Examples

» proofs that behave identically in classical/intuitionistic logic:

5 5 aX
ABFA ax M/\L
ArBoA " ArBES

AABrBVC

» proof of the excluded-middle:
Classical Logic | Intuitionistic Logic

ax
—R
VR

ArA
I—A,—|A
FAV-A
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Examples

» proofs that behave identically in classical/intuitionistic logic:

——ax
ABrA ABrE
ArBoA R ALBES
AAB+BVC
» proof of the excluded-middle:
Classical Logic | Intuitionistic Logic
ArA 2
FA, -A ??
TAv-A 'R FAV-A

O. Hermant (Mines) Double Negations December 12, 2014

10/31



The Excluded-Middle in Intuitionistic Logic
> is not provable. However, its negation is inconsistent.

ArA &
ArFAV-A
—|(A V—|A),A +
—|(A \Y —IA) F—A
—|(AV—|A)I—AV—|A
—|(A \Y —|A),—|(A \Y —|A) +
—|(A V—|A) F

VR1
L

R

VR2

—_

contraction
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The Excluded-Middle in Intuitionistic Logic

> is not provable. However, its negation is inconsistent.

» this suggests a scheme for a translation between int. and clas. logic:
ax ax

ArA ArA
———— VR4
ArAv-A M
~(AV-A)Ar
FA -A —|(A V—|A) F-A
VR2

—|(AV—\A)I-AV—|A
-(AvV-A),=(AVv-A)+

\% contr
FAV-A A (AV-A)E

-

» need: —— everywhere in A (and I)

» the proof of the “negation of the excluded middle” requires duplication
(contraction), which partly explain why we allow several formulze on
the rhs in LK.
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The Excluded-Middle in Intuitionistic Logic

> is not provable. However, its negation is inconsistent.

» this suggests a scheme for a translation between int. and clas. logic:
ax ax
ArA

_AYA
ArAvV-A T
—~(AV-A)AF

SR AL ES N S,

FA,-A —|(AV—|A)I——\A v
(AV-AFAV-A °

-(AvV-A),=(AVv-A)+

TAVA VR AV AT contr
» given a classical proof [ + A, store A on the |hs, and translate:
Clas. Int.
M-AL-Ar I -Az, A F
FEALA  TrALA T,—A F ~—A F,=AF A
rule r AL rule r F-ArA

M-A-Ar -
» need: —— everywhere in A (and IN)

» the proof of the “negation of the excluded middle” requires duplication

(contraction), which partly explain why we allow several formulze on
the rhs in LK.
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Kolmogorov’s Translation
Kolmogorov’s ~—-translation introduces —— everywhere:

BKe = —-B (atoms)
(BAC)K = ——(BKo A CKO)
(Bv C)Ko = ——(BKo v cKo)
(B= C)fo = ——(BKk = CKo)

)

)
(VXA)KO = —|—|(VXAKO)
(IxA)Ke = ——(AxAKO)

Theorem
[+ A is provable in LK iff T, JAK® | is provable in LJ.

Antinegation

1 is an operator, such that:
1—A =A;
1B = —B otherwise.
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Light Kolmogorov’s Translation
Moving negation from connectives to formulae [Dowek& Werner]:

BXK =B (atoms)
(BAC)K = (=B A--CK)
(Bv C)K = (--BK v--CK)
(B= C)X = (--BK = --CK)
(VxA)K = ¥x--AK
(HXA)K = EIX—|—|AK

Theorem
[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Correspondence

AKo — __AK
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

2
T+rAL __TrBA_
T riaaBA
is turned into:
ué m,
MK AR -AK ¢

rK s —|(—|—1AK A —|—|BK ), —1AK +
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

T2
N-AA N-B,A
R::::::::::::::
rN-AABA
is turned into:
ué m,
rK —|AK,—|AK F rK —|BK,—|AK F
- FK,—|AK F==AK A ==BK

rK , —|(—|—|AK A —|—|BK ), —|AK -
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

2
T+rAL __TrBA_
T riaaBA
is turned into:
ué m,
MK AR -AK ¢

rK ,—|AK F—=AK

AR
- rK " -AK == AK A —=BK
rK . —|(—|—|AK A _|_|BK ), _|AK -
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

2
N-AA M+ B,A
R::::::::::::::
NrNFAABA
is turned into:
ué m,
- FK,ﬁAK,—‘AK = FK —|BK —|AK F -R
I'K,—|AK F—-AK I'K,—|AK F —-=BK A
- o T Do Do DT D DT DT DD DD DD ICDSTICDSTIZDZDTZDSoDZD—oDoDcos H
-1 I'K,—|AK Fa=AK A ==BK

rK s —|(—|—1AK A —|—|BK ), —1AK +
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Are they morphisms ?

Consider Kolmogorov’s translation:

> let:
BA:C = ==(BA;C)
Bv.C = —|—|(B Vi C)
B=.C = -~(B=;C)
VexA = ——(VixA)
HCXA = —|—|(E|,'XA)

» unfortunately:

BKo _

(B A C)Ke
(B v C)ke
(B = C)ke

(VxA)Ko

(AxA)Ko =

» this is not a morphism.
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Are they morphisms ?

> No !
* in the case of Ko:
BKe — ——B(atoms)

* in the case of K :

Theorem
I+ Ais provable in LK iff TK <AK 1 is provable in LJ. J

* exercise: these negations are necessary (hint: consider the

excluded-middle and its derivatives)
» can we be more clever ?

* some intuitionistic right-rules are the same as classical right-rules. For

instance, Ag:
M-AA N-B,A
Fr'-AAB,A
* Translate them by themselves. Gddel-Gentzen translation.
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Godel-Gentzen Translation

In this translation, disjunctions and existential quantifiers are replaced by a

combination of negation and their De Morgan duals:

BY — --B
(AAB)9 = A9 A B9

(AvB)99 = —(-A% A -B%9)
(A= B)9 = A% = B9
(VxA)99 = VxA9%

(HXA )gg = —VYx-A9%

Example of translation
((A \Y B) = C)gg is (—|(—|—|—|A A —|—|—|B)) = --C

Theorem
I+ Ais provable in LK iff 99, JA9 + is provable in LJ.
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Are they morphisms ?

» No !
* in the case of Ko:
BKO = —mB(atomS)

* inthe case of K :

Theorem
I+ Ais provable in LK iff TK,<AK ris provable in LJ. J

* exercise: show that those negations are necessary (hint: consider the
excluded-middle and its derivatives)
» can we be more clever ?
* some intuitionistic right-rules are the same as classical right-rules. For
instance, Ag:
r-AA MeB,A
Fr-AAB,A

* Godel-Getzen translation:
* s still not a morphism !

» etc. for all the other known translations (Krivine, Kuroda, Frédéric
Gilbert)
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How to make a morphism: an analysis

v

v

Translation of, say, A A B:

Kolmogorov

Light Kolmogorov

—-—|(AKO A BKO)

(-A) A (--A%)

Feature, double-negation:

Kolmogorov

Light Kolmogorov

on top of connectives

inside connectives

Analysis, problem appearing in:

Kolmogorov

Light Kolmogorov

Problem atoms: -—P

statement: TK ,-AK +

Solution | statement: %0, JAKo

atoms: P

Solution: combine them !
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Dowek’s translation

BD
(BAC)P
(BvC)P

(B= C)P
(VxA)P
(IxA)P

Theorem

B =B (atoms)
BP A; CP = —~~(~-BP A ~-CP)

BP v, CP = —~(~-BP v -~CP)

BP =, CP = —~(--BP = —--CP)

VCXAD = ﬂﬂVX—'ﬂAD

ElCXAD = ——dx--AP

[+ Ais provable in LK iff T? LAP s provable in LJ.

Corollary

Assume A is not atomic. I + A is provable in LK iff 2 - AP is provable in

LJ.

v

Proof:

» =1AD = AP (except in the atomic case) O
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The Price to Pay

» heavy: for each connective, 6 negations. ((A v B) = C)Pis
—|—|(—|—|—|—|(—|—|A V —|—|B) = —|—|C)

most of the time useless, except at the top and at the bottom of the
formula

v

A\

remember Godel-Gentzen’s idea. Use De Morgan duals:

(A \Y B)gg = _1(_|Agg \% —|ng)

v

let us do the same, and divide by two the number of double negations.
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A Light Morphism

Remember De Morgan,

AvB = —|(—|A/\—|B)
AAB = —|(—|AV—|B)

A=>B = -AVB
A = -A
VXA = -dx-A

dxA = -Yx-A
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A Light Morphism

Remember De Morgan, and let

AVv:.B = —|(—|A A —|B)
AncB = —(-AvV-B)
A=.B = —|(—|—|A vV =B

VCXA = —-dx-A
d.xA = -¥Yx-A

> this gives rise to a morphism, (.)° together with:

TC = =T
le = =L

» and we can prove the theorem:

Theorem
I+ Ais provable in LK iff '°, JA° F is provable in LJ.

O. Hermant (Mines) Double Negations December 12, 2014

22/31



Some Cases

Proof by induction on the proof of ' + A.
> last rule vg on some A v B € A. Remember: 4(AV B)° = -A° A =B°

N-A,BA
N-AvBA

* A and B are atomic: JA° = —-A and .B° = -B.
F°, —|A, —|B, JA° +
°,-AA-B,1A°+
* if neither A and B are atomic, then A° and B° have a trailing —, and we
remove it (bouncing):
F°, _|A°, _IBO, 2A° -
M, —A°, =B° JA° +
°,=A° A=B°, JA° +
* mixed case: mixed strategy.

(~R, L) x 2
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Conclusion

» logic with two kinds of connectives: v; and V¢

VA MN-A Vo M- B v L-A,-B+
FrAv;B r-AviB  “FTrAv.B

» and we have:

fI, A, A contain only classical connectives, A non atomic, then I + A in
LK iff T+ A. Aswell, T + Ain LK iff [, 1A F.

» Getting lighter morphisms:
* from =;,A = =-—=-Ato-;A=-A"7
* from A ﬁcB:ﬂ(—!—!AV—!BtOAﬁcB:—!(AV—!B)?
* we cannot always maintain the invariant I', JA F.
* Focusing in LK to the rescue.
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Lighter Morphisms

Remember De Morgan, and let:

Av:.B = —|(—|A A —|B)
An:B = —|(—|A \ —lB)
A=.B = —|(—|—|A vV =B

VCXA = —-dx-A
d.xA = -¥Yx-A
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Lighter Morphisms

Remember De Morgan, and let:

AveB = —(-AA-B)
AAn:B = —|(—|AV—|B)
A=:B = —~(-—-Av-B

-A = - A
VCXA = —-dx-A
dxA = —-¥Yx-A

> this gives rise to a morphism, (.)° together with:

TC: T
J_c: 1

» and we can prove the theorem:

Theorem
I+ A is provable in LK iff [°, JA° F is provable in LJ.
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Dismissing Cuts ?

The cut rule:
N-AA MArFA
A cut
» connects rhs and lhs
» dual to the axiom rule:
m axiom

> is admissible/eliminable (Gentzen)

If we do not have connections, then we can differentiate rhs and Ihs
translations:

AviB = AvB AVLB = —(-AA-B)

AALB = AAB  AALB = —=(-AV-B)
A=lB=A=B A=[B = —(-—Av-B
A = -A A = oA
VIXA = VxA VIXA =  -3Ix-A
dxA = 3IxA AxA = -Vx-A
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A Focus on LK — LJ

> less negations imposes more discipline. Example:
/

7T1 7T2
4l 2 ThoAlaATE TLaBLLATE
MN-AA - B,A AT AT I, LA B
R:::F:/:q:/\:B:Z:::: becomes ==================/\H

I, (A" AB"), JA" +
» when A" introduces negations (3, v, - and atomic cases) ?? can be
- due to the behavior of JA"

» otherwise A" remains of the rhs in the LJ proof.
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A Focus on LK — LJ

> less negations imposes more discipline. Example:
/

7T1 7T2
m 72 TLoAT LAk TLUBLATE
MN-AA N B,A /,_nArI—A’ r’,JA’FBf .
AL AAB,A  Becomes === e ”

I, (A" AB"), JA" +
» when A" introduces negations (3, v, - and atomic cases) ?? can be
- due to the behavior of JA"

» otherwise A" remains of the rhs in the LJ proof.
» the next rule in 71 and w2 must be on A (resp. B). How ?
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A Focus on LK — LJ

» less negations imposes more discipline. Example:
/

7T1 7T2
1 2 TLaATLLATE TLUBNLATE
MN-AA N B,A ’,_IA’I—A’ r’,JAwa .
R:::FEZ:/\:B:’:A:::: becomes ::::IZ-I’:J:A:rT_:A:rj\:B:r:::: R

F’, —|(Ar A Br), JAT
» when A" introduces negations (3, v, - and atomic cases) ?? can be
- due to the behavior of JA"

otherwise A" remains of the rhs in the LJ proof.

v

v

the next rule in 71 and w2 must be on A (resp. B). How ?

v

use Kleene’s inversion lemma
» or ... this is exactly what focusing is about !
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A Focused Classical Sequent Calculus

Sequent with focus

A focused sequent I' + A; A has three parts:
[Fand A

A, the (possibly empty) stoup formula

N . ;A

——
stoup

» when the stoup is not empty, the next rule must apply on its formula,

» under some conditions, it is possible to move/remove a formula
in/from the stoup.
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A Focused Sequent Calculus

FAr AN
NABF ;A M A:A M B;A
AL AR
LAABF ;A FTr AANB; A
RAF ;A rBr .:A M ;A BA
Vi \7:
LAVBF .:A FTr .;AVB,A
M A:A rBr .;A A B;A
=L =R
NA=B+ .; A - A=>B; A
MA[c/x]r .5 A 3 M 5 A[t/x], A 3
LIxAr ;A © M .;IxA,A 7
MLA[t/X]F 5 A v e Ale/x]; A
FTVxAr ;A O F Tr VxA;A 7
Fl—A;Af N .;AA |
—rl—.;A,A OCus —HA;A release
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A Focused Sequent Calculus

F L3 AA
m release
Characteristics:

» in release, A is either atomic or of the form AxB, B v C or =B;

» in focus, the converse holds: A must not be atomic, nor of the form

dxB, B v C nor —B.
» the synchronous (outside the stoup) right-rules are dg, -5, Vg and
(atomic) axiom: the exact places where {.}" introduces negation

Theorem
If '+ Ais provable in LK then I + .; A is provable. J

Proof: use Kleene’s inversion lemma (holds for all connectives/quantifiers,
except dg and V).
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Translating Focused Proofs in LJ

N A;A M+

focus

A,
Tr ;AN T A;n release

Theorem
If I+ A; A in focused LK, then ', LA + A" in LJ

» release is translated by the -5 rule
» focus is translated by the —; rule
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Translating Focused Proofs in LJ

- A;A ¢ N .;AA |
Tr AA ocus Tr AL release
Theorem
If T + A; A in focused LK, then I/, JA™ + AT in LJ }

» release is translated by the -5 rule

» focus is translated by the —; rule

» A" removes the trailing negation on 9”7 (=VY=), V' (= A =), =" (=)
and atoms (——)

» what a surprise: focus is forbidden on them, so rule on the Ihs:

LKrule | dg | =r | VR ax.
Ldrule | YL | nop | AL | =L + ax.

v

see the paper.
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