## **Encoding Zenon Modulo in Dedukti**

Olivier Hermant

CRI, MINES ParisTech and Inria

May 26, 2014

2nd KWARC-Deducteam workshop, Bremen

## **Double-Negation Translations**

#### Double-Negation translations:

- a shallow way to encode classical logic into intuitionistic
- Zenon modulo's backend for Dedukti
- existing translations: Kolmogorov's (1925), Gentzen-Gödel's (1933), Kuroda's (1951), Krivine's (1990), · · ·

#### Minimizing the translations:

- turns more formulæ into themselves;
- shifts a classical proof into an intuitionistic proof of the same formula.
- in this talk first-order logic (no modulo)
- readily extensible

## The Classical Sequent Calculus (LK)

$$\overline{\Gamma, A \vdash A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \land B, \Delta} \land_{R}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \land_{L} \qquad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, A \lor B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash B, \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \lor B, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \uparrow_{L} \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \uparrow_{R}$$

$$\frac{\Gamma, A \vdash C/x \mid \vdash \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \vdash A \mid x \mid A, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A \mid x \mid A, \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \mid x \mid A, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A \vdash A \mid x \mid A, \Delta}{\Gamma, \exists x A \vdash \Delta} \Rightarrow_{L} \qquad \frac{\Gamma \vdash A \mid x \mid A, \Delta}{\Gamma \vdash \exists x A, \Delta} \Rightarrow_{R}$$

3/24

## The Intuitionistic Sequent Calculus (LJ)

$$\overline{\Gamma, A \vdash A}$$
 ax

$$\frac{\Gamma, A, B + \Delta}{\Gamma, A \wedge B + \Delta} \wedge_{L} \qquad \frac{\Gamma + A}{\Gamma + A \wedge B} \wedge_{R}$$

$$\frac{\Gamma, A + \Delta}{\Gamma, A \vee B + \Delta} \xrightarrow{\Gamma, B + \Delta} \vee_{L} \qquad \frac{\Gamma + A}{\Gamma + A \vee B} \vee_{R1} \qquad \frac{\Gamma + B}{\Gamma + A \vee B} \vee_{R2}$$

$$\frac{\Gamma + A}{\Gamma, A \wedge B + \Delta} \xrightarrow{\Gamma, B + \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A + B}{\Gamma + A \Rightarrow B} \Rightarrow_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{L} \qquad \frac{\Gamma, A + B}{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

$$\frac{\Gamma, A + B}{\Gamma, A + \Delta} \xrightarrow{\Gamma, A + \Delta} \neg_{R}$$

#### Note on Frameworks

- structural rules are not shown (contraction, weakening)
- left-rules seem very similar in both cases
- so, lhs formulæ can be translated by themselves
- this accounts for polarizing the translations

## Positive and Negative occurrences

- An occurrence of A in B is positive if:
  - $\star B = A$
  - \* B =  $C \star D$  [ $\star = \land, \lor$ ] and the occurrence of A is in C or in D and positive
  - \* B = C  $\Rightarrow$  D and the occurrence of A is in C (resp. in D) and negative (resp. positive)
  - \* B = Qx C [ $Q = \forall$ ,  $\exists$ ] and the occurrence of A is in C and is positive
- Dually for negative occurrences.



## Kolmogorov's Translation

Kolmogorov's ¬¬-translation introduces ¬¬ everywhere:

$$B^{Ko} = \neg \neg B \qquad \text{(atoms)}$$

$$(B \land C)^{Ko} = \neg \neg (B^{Ko} \land C^{Ko})$$

$$(B \lor C)^{Ko} = \neg \neg (B^{Ko} \lor C^{Ko})$$

$$(B \Rightarrow C)^{Ko} = \neg \neg (B^{Ko} \Rightarrow C^{Ko})$$

$$(\forall xA)^{Ko} = \neg \neg (\forall xA^{Ko})$$

$$(\exists xA)^{Ko} = \neg \neg (\exists xA^{Ko})$$

#### **Theorem**

 $\Gamma \vdash \Delta$  is provable in LK iff  $\Gamma^{Ko}$ ,  $\neg \Delta^{Ko} \vdash$  is provable in LJ.

## Antinegation

$$\vdash \neg A = A;$$

## Light Kolmogorov's Translation

Moving negation from connectives to formulæ [DowekWerner]:

$$B^{K} = B$$
 (atoms)  

$$(B \wedge C)^{K} = (\neg \neg B^{K} \wedge \neg \neg C^{K})$$
  

$$(B \vee C)^{K} = (\neg \neg B^{K} \vee \neg \neg C^{K})$$
  

$$(B \Rightarrow C)^{K} = (\neg \neg B^{K} \Rightarrow \neg \neg C^{K})$$
  

$$(\forall xA)^{K} = \forall x \neg \neg A^{K}$$
  

$$(\exists xA)^{K} = \exists x \neg \neg A^{K}$$

#### **Theorem**

 $\Gamma \vdash \Delta$  is provable in LK iff  $\Gamma^K$ ,  $\neg \Delta^K \vdash$  is provable in LJ.

## Correspondence

$$A^{Ko} = \neg \neg A^{K}$$



## Polarizing Kolmogorov's translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS 
$$B^K = B$$
  $B^K = B$   $B^K = B$ 

### Example of translation

$$((A \lor B) \Rightarrow C)^K$$
 is  $\neg\neg(\neg\neg A \lor \neg\neg B) \Rightarrow \neg\neg C$   
 $((A \lor B) \Rightarrow C)^K$  is  $\neg\neg(\neg\neg A \lor \neg\neg B) \Rightarrow \neg\neg C$ 

## Polarizing Light Kolmogorov's Translation

Warming-up. Consider left-hand and right-hand side formulæ:

LHS 
$$B^{K+} = B$$
  $B^{K-} = B$   $B^{K-} = B$   $(B \land C)^{K+} = (B^{K+} \land C^{K+})$   $(B \land C)^{K-} = (\neg B^{K-} \land \neg C^{K-})$   $(B \lor C)^{K+} = (\neg B^{K-} \lor C^{K+})$   $(B \lor C)^{K-} = (\neg B^{K-} \lor \neg C^{K-})$   $(B \Rightarrow C)^{K+} = (\neg B^{K-} \Rightarrow C^{K+})$   $(B \Rightarrow C)^{K-} = (B^{K+} \Rightarrow \neg C^{K-})$   $(\forall xA)^{K+} = \forall xA^{K+}$   $(\forall xA)^{K-} = \forall x \neg A^{K-}$   $(\exists xA)^{K-} = \exists x \neg A^{K-}$ 

### Example of translation

$$((A \lor B) \Rightarrow C)^{K+} \text{ is } \neg \neg (\neg \neg A \lor \neg \neg B) \Rightarrow C$$
$$((A \lor B) \Rightarrow C)^{K-} \text{ is } (A \lor B) \Rightarrow \neg \neg C$$



#### Theorem

If  $\Gamma \vdash \Delta$  is provable in LK, then  $\Gamma^{K+}$ ,  $\neg \Delta^{K-} \vdash$  is provable in LJ.

**Proof**: by induction. Negation is bouncing. Example:

$$\frac{\pi_1}{\Gamma \vdash A, \Delta} \frac{\pi_2}{\Gamma \vdash B, \Delta}$$

$$\uparrow \vdash A \land B, \Delta$$

$$\frac{\pi'_1}{\Gamma^{K+}, \neg A^{K-}, \neg \Delta^{K-}} \qquad \frac{\pi'_2}{\Gamma^{K+}, \neg B^{K-}, \neg \Delta^{K-}}$$

$$= = = = = = = = = = = = = = = = = \land_R$$

#### **Theorem**

If  $\Gamma \vdash \Delta$  is provable in LK, then  $\Gamma^{K+}$ ,  $\neg \Delta^{K-} \vdash$  is provable in LJ.

**Proof**: by induction. Negation is bouncing. Example:

#### **Theorem**

If  $\Gamma \vdash \Delta$  is provable in LK, then  $\Gamma^{K+}$ ,  $\neg \Delta^{K-} \vdash$  is provable in LJ.

**Proof**: by induction. Negation is bouncing. Example:

$$\begin{array}{c} \frac{\pi_1}{\Gamma \vdash A, \Delta} & \frac{\pi_2}{\Gamma \vdash B, \Delta} \\ & \Gamma \vdash A \land \Delta & \\ & \Gamma \vdash A \land B, \Delta & \end{array}$$

#### **Theorem**

If  $\Gamma \vdash \Delta$  is provable in LK, then  $\Gamma^{K+}$ ,  $\neg \Delta^{K-} \vdash$  is provable in LJ.

**Proof**: by induction. Negation is bouncing. Example:

$$\frac{\pi_1}{\Gamma \vdash A, \Delta} \frac{\pi_2}{\Gamma \vdash B, \Delta}$$

$$\Gamma \vdash A \land B, \Delta$$

#### **Theorem**

If  $\Gamma \vdash \Delta$  is provable in LK, then  $\Gamma^{K+}$ ,  $\neg \Delta^{K-} \vdash$  is provable in LJ.

Proof: by induction. Negation is bouncing. Example:

$$\frac{\pi_{1}}{\begin{array}{c} \Gamma \vdash A, \Delta \\ \Gamma \vdash A, \Delta \\ \Gamma \vdash A \land B, \Delta \end{array}} \frac{\pi_{2}}{\begin{array}{c} \Gamma \vdash B, \Delta \\ \Gamma \vdash A, \Delta \\ \Gamma \vdash A, \Delta \\ \Gamma \vdash A, \Delta \end{array}} \frac{\pi_{2}}{\begin{array}{c} \Gamma \vdash A, \Delta \\ \Gamma \vdash A$$

#### **Theorem**

If  $\Gamma^{K+}$ ,  $\neg \Delta^{K-} \vdash$  is provable in LJ, then  $\Gamma \vdash \Delta$  is provable in LK.

Proof: ad-hoc generalization.

### Gödel-Gentzen Translation

In this translation, disjunctions and existential quantifiers are replaced by a combination of negation and their De Morgan duals:

LHS RHS
$$B^{gg} = \neg \neg B \qquad B^{gg} = \neg \neg B$$

$$(A \land B)^{gg} = A^{gg} \land B^{gg} \qquad (A \land B)^{gg} = A^{gg} \land B^{gg}$$

$$(A \lor B)^{gg} = \neg (\neg A^{gg} \land \neg B^{gg}) \qquad (A \lor B)^{gg} = \neg (\neg A^{gg} \land \neg B^{gg})$$

$$(A \Rightarrow B)^{gg} = A^{gg} \Rightarrow B^{gg} \qquad (A \Rightarrow B)^{gg} = A^{gg} \Rightarrow B^{gg}$$

$$(\forall xA)^{gg} = \forall xA^{gg} \qquad (\forall xA)^{gg} = \forall xA^{gg}$$

$$(\exists xA)^{gg} = \neg \forall x \neg A^{gg} \qquad (\exists xA)^{gg} = \neg \forall x \neg A^{gg}$$

## Example of translation

$$((A \lor B) \Rightarrow C)^{gg}$$
 is  $(\neg(\neg\neg\neg A \land \neg\neg\neg B)) \Rightarrow \neg\neg C$ 

#### **Theorem**

 $\Gamma \vdash \Delta$  is provable in LK iff  $\Gamma^{gg}$ ,  $\Box \Delta^{gg} \vdash$  is provable in LJ.

## Polarizing Gödel-Gentzen translation

Let us apply the same idea on this translation:

LHS RHS
$$B^{p} = B \qquad B^{n} = \neg \neg B$$

$$(B \land C)^{p} = B^{p} \land C^{p} \qquad (B \land C)^{n} = B^{n} \land C^{n}$$

$$(B \lor C)^{p} = B^{p} \lor C^{p} \qquad (B \lor C)^{n} = \neg (\neg B^{n} \land \neg C^{n})$$

$$(B \Rightarrow C)^{p} = B^{n} \Rightarrow C^{p} \qquad (B \Rightarrow C)^{n} = B^{p} \Rightarrow C^{n}$$

$$(\forall xB)^{p} = \forall xB^{p} \qquad (\forall xB)^{n} = \forall xB^{n}$$

$$(\exists xB)^{p} = \exists xB^{p} \qquad (\exists xB)^{n} = \neg \forall x \neg B^{n}$$

### Example of translation

$$((A \lor B) \Rightarrow C)^p \text{ is } (\neg(\neg\neg\neg A \land \neg\neg\neg B)) \Rightarrow C$$
$$((A \lor B) \Rightarrow C)^n \text{ is } ((A \lor B) \Rightarrow \neg\neg C$$

#### Theorem?

 $\Gamma \vdash \Delta$  is provable in LK iff  $\Gamma^{gg}$ ,  $\neg \Delta^{gg} \vdash$  is provable in LJ.

#### A Focus on LK → LJ

less negations imposes more discipline. Example:

$$\begin{array}{c|c} \pi_1 & \pi_2 \\ \hline \Gamma \vdash A, \Delta & \Gamma \vdash B, \Delta \\ \hline \Gamma \vdash A \land B, \Delta & \\ \hline \end{array} \begin{array}{c} \Gamma \vdash B, \Delta \\ \hline \\ \hline \end{array} \begin{array}{c} P, \bot A^n, \bot \Delta^n \vdash \\ \hline \end{array} \begin{array}{c} \pi_2 \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n, \bot \Delta^n \vdash \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} ?? \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash$$

- ▶ when  $A^n$  introduces negations ( $\exists$ ,  $\lor$ ,  $\neg$  and atomic cases) ?? can be  $\neg_B$  due to the behavior of  $\bot A^n$
- otherwise A<sup>n</sup> remains of the rhs in the LJ proof.

#### A Focus on LK → LJ

less negations imposes more discipline. Example:

$$\begin{array}{c|c} \pi_1 & \pi_2 \\ \hline \Gamma \vdash A, \Delta & \Gamma \vdash B, \Delta \\ \hline \Gamma \vdash A \land B, \Delta & \\ \hline \end{array} \begin{array}{c} \Gamma \vdash B, \Delta \\ \hline \\ \hline \end{array} \begin{array}{c} P, \bot A^n, \bot \Delta^n \vdash \\ \hline \end{array} \begin{array}{c} \pi_2 \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n, \bot \Delta^n \vdash \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} ?? \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash B^n \\ \hline \end{array} \begin{array}{c} \Gamma^p, \bot A^n \vdash A^n \vdash$$

- when  $A^n$  introduces negations  $(\exists, \lor, \neg \text{ and atomic cases})$ ?? can be  $\neg_R$  due to the behavior of  $\bot A^n$
- otherwise A<sup>n</sup> remains of the rhs in the LJ proof.
- the next rule in  $\pi_1$  and  $\pi_2$  must be on A (resp. B). How ?

#### A Focus on LK → LJ

less negations imposes more discipline. Example:

$$\frac{\pi_{1}}{\Gamma \vdash A, \Delta} \frac{\pi_{2}}{\Gamma \vdash B, \Delta} = \begin{cases}
\frac{\pi_{1}}{\Gamma^{p}, A^{n}, A^{n}} & \frac{\pi_{2}}{\Gamma^{p}, B^{n}, A^{n}} \\
\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \land B, \Delta} & \frac{\Gamma^{p}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{n}, A^{n}}{\Gamma^{p}, A^{n}, A^{n}, A^{n}, A^{n}, A^{n}} & \frac{\Gamma^{p}, A^{n}, A^{$$

- when  $A^n$  introduces negations  $(\exists, \lor, \neg \text{ and atomic cases})$ ?? can be  $\neg_R$  due to the behavior of  $\bot A^n$
- otherwise A<sup>n</sup> remains of the rhs in the LJ proof.
- the next rule in  $\pi_1$  and  $\pi_2$  must be on A (resp. B). How ?
- use Kleene's inversion lemma
- or ... this is exactly what focusing is about !

# A Focused Classical Sequent Calculus

### Sequent with focus

A focused sequent  $\Gamma \vdash A$ ;  $\Delta$  has three parts:

- Γ and Δ
- A, the (possibly empty) stoup formula

$$\Gamma \vdash \underbrace{\cdot \cdot \cdot}_{\text{stoup}}; \Delta$$

- when the stoup is not empty, the next rule must apply on its formula,
- under some conditions, it is possible to move/remove a formula in/from the stoup.

## A Focused Sequent Calculus

$$\overline{\Gamma, A \vdash .; A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash .; \Delta}{\Gamma, A \land B \vdash .; \Delta} \land_{L} \qquad \frac{\Gamma \vdash A; \Delta}{\Gamma \vdash A \land B; \Delta} \land_{R}$$

$$\frac{\Gamma, A \vdash .; \Delta}{\Gamma, A \lor B \vdash .; \Delta} \lor_{L} \qquad \frac{\Gamma \vdash .; A, B, \Delta}{\Gamma \vdash .; A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, A \Rightarrow B \vdash .; \Delta} \Rightarrow_{L} \qquad \frac{\Gamma, A \vdash B; \Delta}{\Gamma \vdash A \Rightarrow B; \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma, A[c/x] \vdash .; \Delta}{\Gamma, \exists xA \vdash .; \Delta} \exists_{L} \qquad \frac{\Gamma \vdash .; A[t/x], \Delta}{\Gamma \vdash .; \exists xA, \Delta} \exists_{R}$$

$$\frac{\Gamma, A[t/x] \vdash .; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \forall_{L} \qquad \frac{\Gamma \vdash A[c/x]; \Delta}{\Gamma \vdash \forall xA; \Delta} \forall_{R}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \text{ focus} \qquad \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

## A Focused Sequent Calculus

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus } \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

#### Characteristics:

- ▶ in release, A is either atomic or of the form  $\exists xB, B \lor C$  or  $\neg B$ ;
- ▶ in focus, the converse holds: A must not be atomic, nor of the form  $\exists xB, B \lor C$  nor  $\neg B$ .
- ▶ the *synchronous* (outside the stoup) right-rules are  $\exists_R, \neg_R, \lor_R$  and (atomic) axiom: the exact places where  $\{.\}^n$  introduces negation

#### **Theorem**

If  $\Gamma \vdash \Delta$  is provable in LK then  $\Gamma \vdash ...; \Delta$  is provable.

Proof: use Kleene's inversion lemma (holds for all connectives/quantifiers, except  $\exists_R$  and  $\forall_L$ ).

→□▶→□▶→□▶→□▶ □ 900

## Translating Focused Proofs in LJ

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus } \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

#### **Theorem**

If  $\Gamma \vdash A$ ;  $\Delta$  in focused LK, then  $\Gamma^p$ ,  $\neg \Delta^n \vdash A^n$  in LJ

- release is translated by the ¬<sub>R</sub> rule
- focus is translated by the ¬L rule

## Translating Focused Proofs in LJ

$$\frac{\Gamma \vdash A; \Delta}{\Gamma \vdash .; A, \Delta} \text{ focus } \frac{\Gamma \vdash .; A, \Delta}{\Gamma \vdash A; \Delta} \text{ release}$$

#### **Theorem**

If  $\Gamma \vdash A$ ;  $\Delta$  in focused LK, then  $\Gamma^p$ ,  $\neg \Delta^n \vdash A^n$  in LJ

- release is translated by the ¬<sub>R</sub> rule
- focus is translated by the ¬L rule
- ▶  $\bot \Delta^n$  removes the trailing negation on  $\exists^n (\neg \forall \neg), \lor^n (\neg \land \neg), \neg^n (\neg)$  and atoms  $(\neg \neg)$
- what a surprise: focus is forbidden on them, so rule on the lhs:

| LK rule | $\exists_R$ | $\neg_R$ | VR         | ax.            |
|---------|-------------|----------|------------|----------------|
| LJ rule | ΑΓ          | nop      | $\wedge_L$ | $\neg_L$ + ax. |

## Going further: Kuroda's translation

Originating from Glivenko's remark for propositional logic:

### Theorem[Glivenko]

if  $\vdash A$  in LK, then  $\vdash \neg \neg A$  in LJ.

Kuroda's ¬¬-translation:

$$B^{Ku} = B$$
 (atoms)  

$$(B \land C)^{Ku} = B^{Ku} \land C^{Ku}$$
  

$$(B \lor C)^{Ku} = B^{Ku} \lor C^{Ku}$$
  

$$(B \Rightarrow C)^{Ku} = B^{Ku} \Rightarrow C^{Ku}$$
  

$$(\forall xA)^{Ku} = \neg \neg (\forall xA^{Ku})$$
  

$$(\exists xA)^{Ku} = \exists xA^{Ku}$$

### Theorem[Kuroda]

 $\Gamma \vdash \Delta$  in LK iff  $\Gamma^{Ku}$ ,  $\neg \Delta^{Ku} \vdash$  in LJ.

restarts double-negation everytime we pass a universal quantifier.

# Combining Kuroda's and Gentzen-Gödel's translations

- work of Frédéric Gilbert (2013), who noticed:
  - **1** Kuroda's translation of  $\forall x \forall y A$

$$\forall x \neg \neg \forall y \neg \neg A$$
 can be simplified:  $\forall x \forall y \neg \neg A$ 

- ¬¬A itself can be treated à la Gentzen-Gödel
- and of course with polarization

#### Reminder:

Gödel-Gentzen Kuroda 
$$\varphi(P) = \neg \neg P \qquad \qquad \psi(P) = P \\ \varphi(A \wedge B) = \varphi(A) \wedge \varphi(B) \qquad \psi(A \wedge B) = \psi(A) \wedge \psi(B) \\ \varphi(A \vee B) = \neg \neg (\varphi(A) \vee \varphi(B)) \qquad \psi(A \vee B) = \psi(A) \vee \psi(B) \\ \varphi(A \Rightarrow B) = \varphi(A) \Rightarrow \varphi(B) \qquad \psi(A \Rightarrow B) = \psi(A) \Rightarrow \psi(B) \\ \varphi(\exists xA) = \neg \neg \exists x \varphi(A) \qquad \psi(\exists xA) = \exists x \psi(A) \\ \varphi(\forall xA) = \forall x \varphi(A) \qquad \psi(\forall xA) = \forall x \neg \neg \psi(A)$$

# Combining Kuroda's and Gentzen-Gödel's translations

► How does it work?

$$GG$$

$$\varphi(P) = \neg \neg P$$

$$\varphi(A \land B) = \varphi(A) \land \varphi(B)$$

$$\varphi(A \lor B) = \neg \neg (\varphi(A) \lor \varphi(B))$$

$$\varphi(A \Rightarrow B) = \varphi(A) \Rightarrow \varphi(B)$$

$$\varphi(\exists xA) = \neg \neg \exists x \varphi(A)$$

$$\varphi(\forall xA) = \forall x \varphi(A)$$

$$Kuroda$$

$$\psi(P) = P$$

$$\psi(A \land B) = \psi(A) \land \psi(B)$$

$$\psi(A \lor B) = \psi(A) \lor \psi(B)$$

$$\psi(A \Rightarrow B) = \psi(A) \Rightarrow \psi(B)$$

$$\psi(\exists xA) = \exists x\psi(A)$$

$$\psi(\forall xA) = \forall x \neg \neg \psi(A)$$

# Combining Kuroda's and Gentzen-Gödel's translations

How does it work?

How to prove that ? Refine focusing into phases.

## Example of translation

$$\chi((A \lor B) \Rightarrow C)$$
 is  $(A \lor B) \Rightarrow C$   
 $\varphi((A \lor B) \Rightarrow C)$  is  $(A \lor B) \Rightarrow \neg \neg C$ 



$$\overline{\Gamma, A \vdash .; A, \Delta}$$
 ax

$$\frac{\Gamma, A, B \vdash .; \Delta}{\Gamma, A \land B \vdash .; \Delta} \land_{L}$$

$$\frac{\Gamma, A \vdash .; \Delta}{\Gamma, A \lor B \vdash .; \Delta} \lor_{L}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, A \Rightarrow B \vdash .; \Delta} \Rightarrow_{L}$$

$$\frac{\Gamma, A[c/x] \vdash .; \Delta}{\Gamma, \exists xA \vdash .; \Delta} \exists_{L}$$

$$\frac{\Gamma, A[t/x] \vdash .; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \forall_{L}$$

$$\frac{\Gamma \vdash A; \Delta}{\Gamma, \forall xA \vdash .; \Delta} \text{ focus}$$

$$\frac{\Gamma \vdash A; \Delta \qquad \Gamma \vdash B; \Delta}{\Gamma \vdash A \land B; \Delta} \land_{R}$$

$$\frac{\Gamma \vdash ..; A, B, \Delta}{\Gamma \vdash ..; A \lor B, \Delta} \lor_{R}$$

$$\frac{\Gamma, A \vdash B; \Delta}{\Gamma \vdash A \Rightarrow B; \Delta} \Rightarrow_{R}$$

$$\frac{\Gamma \vdash ..; A[t/x], \Delta}{\Gamma \vdash ..; \exists xA, \Delta} \exists_{R}$$

$$\frac{\Gamma \vdash A[c/x]; \Delta}{\Gamma \vdash \forall xA; \Delta} \lor_{R}$$

$$\frac{\Gamma \vdash ..; A, \Delta}{\Gamma \vdash ..; A, \Delta} \text{ release}$$

#### Results

### Theorem [Gilbert]

if  $\Gamma_0$ ,  $\neg \Gamma_1 \vdash A$ ;  $\Delta$  in  $\mathsf{LK}_{\uparrow\downarrow}$  then  $\chi(\Gamma_0)$ ,  $\neg \psi(\Gamma_1)$ ,  $\neg \psi(\Delta) \vdash \varphi(A)$  in LJ.

### Theorem [Gilbert]

 $A \mapsto \varphi(A)$  is minimal among the  $\neg \neg$ -translations.

- ▶ 58% of Zenon's modulo proofs are secretly constructive
- polarizing the translation of rewrite rules in Deduction modulo:
  - ★ problem with cut elimination: a rule is usable in the lhs and rhs
  - back to a non-polarized one
  - ★ further work: use polarized Deduction modulo
- further work: polarize Krivine's translation

#### What you hopefully should remember:

- Focusing is a perfect tool to remove double-negations;
- ▶ antinegation ¬.

