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Double-Negation Translations

Double-Negation translations:
» a shallow way to encode classical logic into intuitionistic
» Zenon’s backend for Dedukti

» existing translations: Kolmogorov’s (1925), Gentzen-Gddel’s (1933),
Kuroda’s (1951), Krivine’s (1990), - - -

Minimizing the translations:
» turns more formulae into themselves;
» shifts a classical proof into an intuitionistic proof of the same formula.
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Morphisms

» A morphism preserves the operations between two structures:

(Z,+,0) > (R*x*1)
Group morphism: { h(0) - 1
h(a+b) — h(a)=h(b)

» atranslation that is a morphism:

h(P) = P
h(AAB) = h(A)A h(B)
h(Av B) = h(A)v h(B)
h(A = B) = h(A) = h(B)
h(vxA) = V¥ xh(A)
h(IxA) = 3 x h(A)

(of course this is the identity)
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Morphisms
» A morphism preserves the operations between two structures:

(Z,4,0) —» (R* 1)
Group morphism: { h(0) - 1
h(a+b) — h(a)=h(b)

» a more interesting translation that is a morphism:
h(P) = P
h(AAB) = h(A)A: h(B)
h(Av B) = h(A) v, h(B)
h(A = B) = h(A) = h(B)
h(VxA) = V:x h(A)
h(IxA) = 3A.x h(A)

two kinds of connectives: the classical and the intuitionistic ones.

O. Hermant (Mines) Double Negations December 1, 2014

3/24



Morphisms
» A morphism preserves the operations between two structures:

(Z,4,0) —» (R* 1)
Group morphism: { h(0) - 1
h(a+b) — h(a)=h(b)

» a more interesting translation that is a morphism:
h(P) = P
h(AAB) = h(A)A: h(B)
h(Av B) = h(A) v, h(B)
h(A = B) = h(A) = h(B)
h(VxA) = V:x h(A)
h(IxA) = 3A.x h(A)

two kinds of connectives: the classical and the intuitionistic ones.

» Design a unified logic, where we can reason both classically and
intuitionistically:
M A strange premises
FAV;B r-AveB
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Translations that are Morphisms

» None of the previous translations is a morphism.
» Dowek has shown one, it is very verbose.
» We make it lighter.

Plan:

@ Classical and Intuitionistic Logic
@ Sequent Calculus

© Double Negation Translations
© Morphisms
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Classical vs. Intuitionistic
» The principle of excluded-middle. Should

AV -A

be provable ? Yes or no ?
» Yes. This is what is called classical logic.
» Wait a minute !

The Drinker’s Principle
In a bar, there is somebody such that, if he drinks, then everybody drinks.

Two Irrationals

There exists iy, ip € R\Q such that ,-;'z € Q.

A Manicchean World

You are with us, or against us.
Rashomon (A. Kurosawa).

v
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Classical vs. Intuitionistic
» The principle of excluded-middle. Should
AvV-A

be provable ? Yes or no ?
» No. This is the constructivist school (Brouwer, Heyting, Kolomogorov).
» Intuitionistic logic is one of those branches. It features the BHK
interpretation of proofs:
Witness Property
A proof of AxA (in the empty context) gives a witness t for the property A. )

Disjunction Property

A proof of A Vv B (in the empty context) reduces eventually either to a proof
of A, or to a proof of B.

v
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The Classical Sequent Calculus (LK)

FArA A &
LABFA rFAA  TrBA
FTAABFA ' F FFAAB.A R
ArA  TBrA |, rFABA
LAVBFA - rFAvB,A ¢
rFAA  TBrA _ LA-B.A
TA=BFrA t rFrA=B.A 7
-A A - NLAFA .
T-AFA TF—A A
MA[c/x]+ A v Aft/x], A
FLaAxAr A - FraxA A ¢
FA[t/x]FA e Ale/x]. A
FTVXArA - FTrvxA, A ¢
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The Intuitionistic Sequent Calculus (LJ)

T.ArA ¥
rABrA A re8
TAABFA 't F-AAB R
MNArFA I',BI-AV MrN-A . B Vs
AVBrA t rFAvB TFrAvVB
A BrA _ rArB R
TA=BFrA - A= B A
Mr-A - MLAF .
N-ArA Mr-A
M Ale/x]+r A I+ Aft/x] 3
LAXAr A © M F XA R
FLA[t/X]FA I+ Ale/x] y
TVXArA - M F VXA R
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Note on Frameworks

v

structural rules are not shown (contraction, weakening)

v

left-rules seem very similar in both cases

v

so, Ihs formulze can be translated by themselves

v

this accounts for polarizing the translations
» another work [Boudard & HJ:

* does not behave well in presence of cuts
* appeals to focusing techniques
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Examples

» proofs that behave identically in classical/intuitionistic logic:

5 5 aX
ABFA ax M/\L
ArBoA " ArBES

AABrBVC

» proof of the excluded-middle:
Classical Logic | Intuitionistic Logic

ax
—R
VR

ArA
I—A,—|A
FAV-A
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Examples

» proofs that behave identically in classical/intuitionistic logic:

——ax
ABrA ABrE
ArBoA R ALBES
AAB+BVC
» proof of the excluded-middle:
Classical Logic | Intuitionistic Logic
ArA 2
FA, -A ??
TAv-A 'R FAV-A
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The Excluded-Middle in Intuitionistic Logic

> is not provable. However, its negation is inconsistent.

_ARA Y
ArAv-A T
—|(AV—|A),AI- -R

=(AvV-A)r-A
—|(AV—|A)I—AV—|A
—|(A \Y —|A),—|(A \Y —|A) +
-(AV-A)t+

VR2

—_

contraction

» given a classical proof I + A, store A on the |hs, and translate:
Clas. Int.
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The Excluded-Middle in Intuitionistic Logic

> is not provable. However, its negation is inconsistent.

» this suggests a scheme for a translation between int. and clas. logic:

Ara & ArA &
— VR

ArAv-A M
“(AV-A)AF
A, A “(AV-A)r-A
—\(AV—\A)I-AV—|A
=(AV-A),~(AV-A)+

VR2

-

contr

FAV-A R ~(AV-A)E
» given a classical proof [ + A, store A on the |hs, and translate:
Clas. Int.
M-AL-Ar _ M~Ae-Ar
MNe A A kA, A I -AFr-—A [=AF-—==A
rule r AL F-ArA - rule r
r-A-Ar

» need: -— everywhere in A (and I')

» the proof of the “negation of the excluded middle” requires duplication
(contraction), which partly explain why we allow several formulze on
the rhs in LK.
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Kolmogorov’s Translation
Kolmogorov’s ~—-translation introduces —— everywhere:

BKe = —-B (atoms)
(BAC)K = ——(BKo A CKO)
(Bv C)Ko = ——(BKo v cKo)
(B= C)fo = ——(BKk = CKo)

)

)
(VXA)KO = —|—|(VXAKO)
(IxA)Ke = ——(AxAKO)

Theorem
[+ A is provable in LK iff T, JAK® | is provable in LJ.

Antinegation

1 is an operator, such that:
1—A =A;
1B = —B otherwise.
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Light Kolmogorov’s Translation
Moving negation from connectives to formulae [Dowek& Werner]:

BXK =B (atoms)
(BAC)K = (=B A--CK)
(Bv C)K = (--BK v--CK)
(B= C)X = (--BK = --CK)
(VxA)K = ¥x--AK
(HXA)K = EIX—|—|AK

Theorem
[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Correspondence

AKo — __AK
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

2
T+rAL __TrBA_
T riaaBA
is turned into:
ué m,
MK AR -AK ¢

rK s —|(—|—1AK A —|—|BK ), —1AK +
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

T2
N-AA N-B,A
R::::::::::::::
rN-AABA
is turned into:
ué m,
rK —|AK,—|AK F rK —|BK,—|AK F
- FK,—|AK F==AK A ==BK

rK , —|(—|—|AK A —|—|BK ), —|AK -
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

2
T+rAL __TrBA_
T riaaBA
is turned into:
ué m,
MK AR -AK ¢

rK ,—|AK F—=AK

AR
- rK " -AK == AK A —=BK
rK . —|(—|—|AK A _|_|BK ), _|AK -
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How does the Translation Work ?
Theorem

[+ Ais provable in LK iff TX,=AK + is provable in LJ.

Proof: Induction on the LK proof. = bounces. Example: rule Ag.

2
N-AA M+ B,A
R::::::::::::::
NrNFAABA
is turned into:
ué m,
- FK,ﬁAK,—‘AK = FK —|BK —|AK F -R
I'K,—|AK F—-AK I'K,—|AK F —-=BK A
- o T Do Do DT D DT DT DD DD DD ICDSTICDSTIZDZDTZDSoDZD—oDoDcos H
-1 I'K,—|AK Fa=AK A ==BK

rK s —|(—|—1AK A —|—|BK ), —1AK +
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Are they morphisms ?

Consider Kolmogorov’s translation:

> let:
BA:C = ==(BA;C)
Bv.C = —|—|(B Vi C)
B=.C = -~(B=;C)
VexA = ——(VixA)
HCXA = —|—|(E|,'XA)

» unfortunately:

BKo _

(B A C)Ke
(B v C)ke
(B = C)ke

(VxA)Ko

(AxA)Ko =

» this is not a morphism.
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Are they morphisms ?

> No !
* in the case of Ko:
BKe — ——B(atoms)

* in the case of K :

Theorem
I+ Ais provable in LK iff TK <AK 1 is provable in LJ. J

* exercise: these negations are necessary (hint: consider the

excluded-middle and its derivatives)
» can we be more clever ?

* some intuitionistic right-rules are the same as classical right-rules. For

instance, Ag:
M-AA N-B,A
Fr'-AAB,A
* Translate them by themselves. Gddel-Getzen translation.
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Godel-Gentzen Translation

In this translation, disjunctions and existential quantifiers are replaced by a

combination of negation and their De Morgan duals:

BY — --B
(AAB)9 = A9 A B9

(AvB)99 = —(-A% A -B%9)
(A= B)9 = A% = B9
(VxA)99 = VxA9%

(HXA )gg = —VYx-A9%

Example of translation
((A \Y B) = C)gg is (—|(—|—|—|A A —|—|—|B)) = --C

Theorem
I+ Ais provable in LK iff 99, JA9 + is provable in LJ.
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Are they morphisms ?

» No !
* in the case of Ko:
BK° = ——B(atoms)

* in the case of K :

Theorem
I+ Ais provable in LK iff TK AKX tis provable in LJ. J

* exercise: show that those negations are necessary (hint: consider the
excluded-middle and its derivatives)
» can we be more clever ?
* some intuitionistic right-rules are the same as classical right-rules. For
instance, Ag:
r-AA MeB,A
r-AABA

* Godel-Getzen translation:
* s still not a morphism !

» etc. for all the other known translations (Krivine, Kuroda)
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How to make a morphism: an analysis

v

v

Translation of, say, A A B:

Kolmogorov

Light Kolmogorov

—|—|(AK° A BKO)

(-AF) A (--AF)

Feature, double-negation:

Kolmogorov

Light Kolmogorov

on top of the connective

inside the connective

Analysis, problem appearing in:

Kolmogorov

Light Kolmogorov

Problem

atoms: -—P statement: K, -AK ¢

Solution | statement: %, JAKo

atoms: P

Solution: combine them !
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Dowek’s translation

BP = B =B (atoms)
(BvC)Y = BPv,CP = —~(--BPv--CP)

(VXA)D = VCXAD = ﬂﬂVX—'ﬂAD
(ElXA)D = ElCXAD = —|—E|X—|—|AD
Theorem

[+ Ais provable in LK iff T? LAP s provable in LJ.

Corollary

Assume A is not atomic. I + A is provable in LK iff 2 - AP is provable in
LJ.

v

Proof:
» =1AD = AP (except in the atomic case) O
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The Price to Pay

» heavy: for each connective, 6 negations. ((A v B) = C)Pis
—|—|(—|—|—|—|(—|—|A V —|—|B) = —|—|C)

most of the time useless, except at the top and at the bottom of the
formula

v

A\

remember Godel-Gentzen’s idea. Use De Morgan duals:

(A \Y B)gg = _1(_|Agg \% —|ng)

v

let us do the same, and divide by two the number of double negations.
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A Light Morphism

Remember De Morgan,

AvB = —|(—|A/\—|B)
AAB = —|(—|AV—|B)

A=>B = -AVB
A = -A
VXA = -dx-A

dxA = -Yx-A
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A Light Morphism

Remember De Morgan, and let

AveB = —(-AA-B)
An:B = —|(—|AV—|B)
A=,B = —(=-AV-B

—10/4 = —1—1-114
VXA = -dx-A
dxA = —-Yx—-A

> this gives rise to a morphism, (.)® together with:

TC = =T
le = =L

» and we can prove the theorem:

Theorem
[+ A is provable in LK iff I'®, JA® + is provable in LJ.
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Some Cases

Proof by induction on the proof of I' + A.

> last rule Vg onsome A v B € A. Remember:
_|(A \Y% B)O = =A% A =B°

N-A,BA
N-AvB,A

* A and B are atomic: JA® = -A and .B® = -B.
[, A, =B, JA° +
FG, -A A =B, JA°
* if neither A and B are atomic, then A® and B® have a trailing -, and we
remove it (bouncing):
I‘O, _IAO, _IBO, JA°
r°,-A®,=B°, LA°
FG, -A® A —|B®, JA° -
* mixed case: mixed strategy.

(mr,—)x2

O. Hermant (Mines) Double Negations December 1, 2014 23/24



Conclusion, Further Work

» logic with two kinds of connectives: v; and Vv,

_TrA  yp,TEB
r'-Av;B Fr-Av;B

» and we have:

fI, A, A contain only classical connectives, A non atomic, then I + A in
LK iff T+ A. Aswell, T + Ain LK iff [, 1A F.

VR1

» next, lighter morphisms:

* from =;A = -——-Ato ;A =-A"?
from A =, B:ﬂ(—!—!AVﬂBtOA ﬁcB:ﬂ(AVﬁB)?
we cannot always maintain the invariant I', JA +.
Focusing in LK to the rescue.

* % %
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