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Key Questions in Logics

I What is true?

F What is truth?

I What is provable?

F What is a proof?

I Are they links between truth (semantics) and provability (syntax) ?
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Logical Systems in Computer Science

I automated theorem proving [P. Halmagrand]
I proof checking [R. Saillard]
I application domain: formal methods

F large (mathematical) proofs
F safe, bug-free, system conception

I theory of programming languages (type systems, semantics, static analysis)
I and others: model checking, realizability, proof theory, ...
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Key Properties of Logical Systems
I assume a semantics (truth notion) and a syntax (proof notion)

Syntax Semantics

A ` B A � B

Soundness

Completeness

Theorem (Soundness)
If a statement is provable, it is (universally) true.

Corollary (Consistency)

Absurd statements have no proofs.

Theorem (Completeness)
If a statement is (universally) true, it is provable.

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 4 / 1



Key Properties of Logical Systems
Syntax Semantics

A ` B A � B

Soundness

Completeness

A `∗ B

Cut
Admissibility

Theorem (Cut Admissibility)

If a statement is provable, then it is provable without detour.

I consistency
I automated proof-search
I focus on computation (CS point of view):

F proof terms
F normalization (termination of proof-term reduction)
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Outline

1 Intro
2 Playing Around (Classical Tableaux for Propositional Logic)
3 Sequent Calculus and Cut Admissibility
4 Extensions
5 Getting Rid of Tableaux
6 Opening the Box
7 Conclusion

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 6 / 1



2. Playing Around
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Propositional Logic

I atomic formulas A ,B ,C
I connectives ∧,∨,⇒,¬,⊥,>
I semantics:

F truth tables
A B A ∧ B A ∨ B A ⇒ B ¬A ⊥ >

0 0 0 0 1 1 0 1
0 1 0 1 1 1 0 1
1 0 0 1 0 0 0 1
1 1 1 1 1 0 0 1

F valuation ~F� for any formula F

I syntax: a proof-search method called the tableaux method.
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Tableaux Method in Classical Logic

I refutation-based method: to show F , derive a contradiction from ¬F .
I immediate contradictions (closure rule)

I conjunctive forms
I disjunctive forms

⊥
⊥

�
¬> ¬>
�

F ,¬F
cl

�

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 9 / 1



Tableaux Method in Classical Logic

I refutation-based method: to show F , derive a contradiction from ¬F .
I immediate contradictions (closure rule)
I conjunctive forms

I disjunctive forms

⊥
⊥

�
¬> ¬>
�

F ,¬F
cl

�

A ∧ B
∧

A ,B
¬(A ∨ B)

¬∨
¬A ,¬B

¬(A ⇒ B)
¬⇒

A ,¬B

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 9 / 1



Tableaux Method in Classical Logic

I refutation-based method: to show F , derive a contradiction from ¬F .
I immediate contradictions (closure rule)
I conjunctive forms
I disjunctive forms

⊥
⊥

�
¬> ¬>
�

F ,¬F
cl

�

A ∧ B
∧

A ,B
¬(A ∨ B)

¬∨
¬A ,¬B

¬(A ⇒ B)
¬⇒

A ,¬B

¬(A ∧ B)
¬∧

¬A ¬B
A ∨ B

∨
A B

A ⇒ B
⇒

A ¬B

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 9 / 1



Example

I prove (B ∨ A)⇒ (A ∨ B)

¬((B ∨ A)⇒ (A ∨ B))

I tableau as a tree
I choice for rule application
I proof iff each branch is closed
I notation F1, · · · ,Fn ↪→ �
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Soundness and Completeness

Soundness of the Tableaux Method
If there exists a closed tableau containing the formulas F1, · · · ,Fn, the
formula F1 ∧ · · · ∧ Fn is unsatisfiable.

I no atomic truth value assignment makes ~F1 ∧ · · · ∧ Fn� = 1
I no model of F1, · · · ,Fn

I induction on the tableau proof and case analysis
I basic concept: each rule is sound.

Example on the ∨ rule. If ~F� = 0 and ~G� = 0, then ~F ∨ G� = 0.

A ∨ B
∨

A B
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Completeness of Tableaux Method

I another view of tableaux rules:
F exhaustively searching for a countermodel of F
F refutation of F ∼ a model of ¬F ∼ an interpretation with ~¬F� = 1

I if search fails, all interpretations respect ~F� = 1.

⊥
⊥

�
¬> ¬>
�

F ,¬F
cl

�

A ∧ B
∧

A ,B
¬(A ∨ B)

¬∨
¬A ,¬B

¬(A ⇒ B)
¬⇒

A ,¬B

¬(A ∧ B)
¬∧

¬A ¬B
A ∨ B

∨
A B

A ⇒ B
⇒

A ¬B
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Example: Countermodel from Exhaustion

I try to prove A ⇒ (A ∧ B)

¬(A ⇒ (A ∧ B))

A ,¬(A ∧ B)

¬A
�

¬B

I right branch open and complete

Complete Branch
A branch of a tableau is complete if all applicable rules have been applied.

I Countermodel construction:
F collect the litterals (plain and negated atoms), A and ¬B,
F assign the truth values accordingly, ~A� = 1 and ~B� = 0,
F yields ~A ⇒ (A ∧ B)� = 0.
F Interpretation that falsifies A ⇒ (A ∧ B).
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Completeness Proof Sketch

Theorem (Completeness)
If a tableau with formulas F1, · · · ,Fn cannot be closed, there is an
interpretation such that ~Fi� = 1.

I complete branch mandatory to collect the litterals
I need for a systematic proof-search algorithm
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3. Sequent Calculus and Cut Admissibility
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Sequent Calculus

I Sequent Calculus: a framework for reasoning [Gentzen]

I hypotheses Γ, conclusions ∆, notation Γ ` ∆

axiom
Γ,A ` A ,∆

Γ ` A ,∆ Γ,A ` ∆
cut

Γ ` ∆

ΓA ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A ,B ,∆
∨R

Γ ` A ∨ B ,∆
Γ,A ` ¬B ,∆

⇒R
Γ ` A ⇒ B ,∆

Γ ` A ,∆ Γ ` B ,∆
∧R

Γ ` A ∧ B ,∆
Γ,A ` ∆ Γ,B ` ∆

∨L
Γ,A ∨ B ` ∆

Γ,A ` ∆ Γ ` B ,∆
⇒L

Γ,A ⇒ B ` ∆

I example proof.

B ` A ,B
B ` A ∨ B

A ` A ,B
A ` A ∨ B

B ∨ A ` A ∨ B
` (B ∨ A)⇒ (A ∨ B)
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The Cut Rule

I the cut rule: a necessary detour

Γ ` A ,∆ Γ,A ` ∆
cut

Γ ` ∆
I used by human beings, interaction
I at the heart of logic and Computer Science

F elimination. Proof transformation mechanisms.
F admissibility. Show the follwing result

Cut Admissibility

If Γ ` A ,∆ and Γ,A ` ∆ provable, then Γ ` ∆ is provable.

F of course, in s calculus without the cut rule.
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Completeness and Cut Admissilibity

A ` B A � B

Soundness

A ,¬B ↪→ �

???

A `∗ B
Tableaux

Completeness
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Can We Translate Tableaux to Sequents?

I A tableau is a reversed cut-free sequent
F ¬X tableau rule ∼ XR rule
F X tableau rule ∼ XL rule

¬((B ∨ A)⇒ (A ∨ B))
¬⇒

B ∨ A ,¬(A ∨ B)
∨

B ,¬(A ∨ B)
¬∨

B ,¬A ,¬B
�

A ,¬(A ∨ B)
¬∨

A ,¬A ,¬B
�

B ` A ,B
∨R B ` A ∨ B

A ` A ,B
∨R A ` A ∨ B

∨L B ∨ A ` A ∨ B⇒L
` (B ∨ A)⇒ (A ∨ B)

I We just proved cut elimination
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4. Extensions
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Switching to First-Order

I we add variables, terms and quantifiers

∀x(P(x)⇒ Q(x))

I first-order tableaux, first-order sequent calculus
I cut admissibility by the previous method
I but the complete exhaustive proof-search is highly inefficient

F enumerates all the terms of the language t0, t1, · · ·
F complete branch with ∀xF must have F [t0/x],F [t1/x], · · ·
F some sweat to keep proof-search fair
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Efficiency in First-Order Tableaux
I unefficient naive enumeration, maybe was F [t2017/x] the right choice

?
I do not know: wait to instantiate!
I free variable tableaux

¬(∃x(D(x)⇒ ∀yD(y)))
¬∃

¬(D(X)⇒ ∀yD(y))
¬⇒

D(X),¬∀yD(y)
∀

¬D(c)
�

� {X ≈ c}

I FV tableaux: exponential speedups
I sequent calculus connection lost

F freshness condition globally ensured, not locally
F re-expand, double inverted induction, duplication

π

b1 b2

Γ ` ∆
n2n1

Γ,¬∆
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Switching to Deduction Modulo Theory
Rewrite Rule
A term (resp. proposition) rewrite rule is a pair of terms (resp. formulæ)
l → r , where FV(l) ⊆ FV(r) and, in the propositiona case, l is atomic.

Examples:
I term rewrite rule:

A ∪ ∅ → A

I proposition rewrite rule:

A ⊆ B → ∀x x ∈ A ⇒ x ∈ B

Conversion modulo a Rewrite System

We consider the congruence ≡ generated by a set of proposition rewrite
rules R and a set of term rewrite rules E (often implicit)

Example:
A ∪ ∅ ⊆ A ≡ ∀x x ∈ A ⇒ x ∈ A
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(Classical) Sequent Calculus modulo

We add two conversion rules:

Γ ` A ,∆
convR , [A ≡ B]

Γ ` B ,∆
Γ,A ` ∆

convL , [A ≡ B]
Γ,B ` ∆

Or embed conversions modulo RE directly inside the rules (next slide).
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(Classical) Sequent Calculus

ax
A ` A

Γ ` A ,∆ Γ,A ` ∆
cut

Γ ` ∆

Γ,A ,B ` ∆
∧L

Γ,A ∧ B ` ∆

Γ ` A ,∆ Γ ` B ,∆
∧R

Γ ` A ∧ B ,∆

Γ,A ` ∆ Γ,B ` ∆
∨L

Γ,A ∨ B ` ∆

Γ ` A ,B ,∆
∨R

Γ ` A ∨ B ,∆

Γ,B ` ∆ Γ ` A ,∆
⇒L

Γ,A ⇒ B ` ∆

Γ,A ` B ,∆
⇒R

Γ ` A ⇒ B ,∆
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(Classical) Sequent Calculus Modulo

ax, [A ≡ B]
A ` B

Γ ` A ,∆ Γ,B ` ∆
cut, [A ≡ B]

Γ ` ∆

Γ,A ,B ` ∆
∧L , [C ≡ A ∧ B]

Γ,C ` ∆

Γ ` A ,∆ Γ ` B ,∆
∧R , [C ≡ A ∧ B]

Γ ` C ,∆

Γ,A ` ∆ Γ,B ` ∆
∨L , [C ≡ A ∨ B]

Γ,C ` ∆

Γ ` A ,B ,∆
∨R , [C ≡ A ∨ B]

Γ ` C ,∆

Γ,B ` ∆ Γ ` A ,∆
⇒L , [C ≡ A ⇒ B]

Γ,C ` ∆

Γ,A ` B ,∆
⇒R , [C ≡ A ⇒ B]

Γ ` C ,∆
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Proof of A ⊆ A with and without DM

I without:

A ⊆ A ⇒ [· · · ], x ∈ A ` x ∈ A ,A ⊆ A
A ⊆ A ⇒ [· · · ] ` x ∈ A ⇒ x ∈ A ,A ⊆ A

A ⊆ A ⇒ [· · · ] ` ∀x(x ∈ A ⇒ x ∈ A),A ⊆ A A ⊆ A ⇒ [· · · ],A ⊆ A ` A ⊆ A
A ⊆ A ⇒ ∀x(x ∈ A ⇒ x ∈ A),∀x(x ∈ A ⇒ x ∈ A)⇒ A ⊆ A ` A ⊆ A

A ⊆ A ⇔ ∀x(x ∈ A ⇒ x ∈ A) ` A ⊆ A
∀Y(A ⊆ Y ⇔ ∀x(x ∈ A ⇒ x ∈ Y)) ` A ⊆ A
∀X∀Y(X ⊆ Y ⇔ ∀x(x ∈ X ⇒ x ∈ Y)) ` A ⊆ A

I with:

x ∈ A ` x ∈ A
` x ∈ A ⇒ x ∈ A
` ∀x(x ∈ A ⇒ x ∈ A)

` A ⊆ A
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Tableaux and Cuts in Deduction Modulo Theory

I beyond first order (axiomless higher-order logic, arithmetic, ...)
I everything depends on RE.

F consistency (A → ¬A )
F cut elimination (A → (A ⇒ A))
F cut admissibility
F undecidable, even if RE confluent terminating.

Consistency Cut elimination Normalization
⇐

;

⇐

;

⇒

Tableaux
Completeness

Completeness ⇒
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Semantics for Deduction Modulo Theory

I your favorite semantics
I add one constraint

Model of RE
An interpretation ~� is a model of RE if for any F ,F ′, such that F ≡ F ′, we
have ~F� = ~F ′�.

I straightforward Soundness Theorem
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Generic Approach for Tableaux

I as far as possible
F needs only confluence
F everything except countermodel construction

I difficulties (besides models)
F fair and exhausting proof-search design (STEP)
F interleave quantifier instantiation and rewriting
F add free-variables

I optimized proof-seach, holes on the branch
F fill the gaps to get a (semi-)valuation
F not forgetting rewriting
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Specific Countermodel Constructions

Completeness of tableaux, hence cut admissibility for
I positive rewrite systems

even(0) → >

even(S(x)) → ¬odd(x)
odd(S(x)) → ¬even(x)

I ordered rewrite systems
I higher-order logic as a rewrite system

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 31 / 1



5. Getting Rid of Tableaux
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Direct Completeness

I most difficulties in Tableaux Completeness

I most difficulties in Strong Completeness
F more flexibility in the semantics
F 0/1 Boolean algebra imposed by tableaux (intuitionistic case, Kripke

structures).

A ` B A � B

Soundness

Completeness

A ,¬B ↪→ �A `∗ B
Tableaux

Completeness
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More Flexible Semantics: Algebraic Structures
I propositional intuitionistic logic here (first-order, higher-order possible)
I Heyting algebras
I a universe Ω, operators ∧,∨,⇒
I an order ≤: Ω is a lattice.
I lowest upper bound (join: ∧), greatest lower bound (meet: ∨)

a ∧ b ≤ a a ∧ b ≤ b c ≤ a and c ≤ b implies c ≤ a ∧ b

a ≤ a ∨ b b ≤ a ∨ b a ≤ c and b ≤ c implies a ∨ b ≤ c

I like Boolean algebras (classical case), but
I weak complement (aka implication property):

a ∧ b ≤ c iff a ≤ b ⇒ c

I example: R and open sets:

b ⇒ c := the interior of b ∪ a
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Cut Admissibility: Algebraic Way
Base Elements of the Lindenbaum Algebra
dAe = {B | A ` B and B ` A }

Lidenbaum algebra:
I interpretation of formulas

F ~A� = dAe on atoms, then induction
F dAe ≤ dBe iff A ` B

Fundamental Lemma
For any formula A, ~A� = dAe

I what do we have ?

Completeness
if ~A� ≤ ~B� in all models, then A ` B.

F this is the definition of ≤ in the Lindenbaum algebra.

I need the cut rule
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Cut Admissibility: Algebraic Way

Base Elements of the Lindenbaum Algebra
dAe = {B | A ` B and B ` A }

I ≤ is ⊆ and g.l.b. (∧) and l.u.b. (∨) are “intersection” and “union”
I close Ω by arbitrary intersection:

The Algebra Ω

Ω =

⋂
C∈C

dCe | for C set of formulas


Ω is composed of arbitrary intersections of base elements

I Ω not closed by union
F there are other ways to compute a least upper bound ...

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 36 / 1



Cut Admissibility: Algebraic Way

Base Elements of the Context Algebra

dAe = {Γ | Γ ` A }

I ≤ is ⊆ and g.l.b. (∧) and l.u.b. (∨) are “intersection” and “union”
I close Ω by arbitrary intersection:

The Algebra Ω

Ω =

⋂
C∈C

dCe | for C set of formulas


Ω is composed of arbitrary intersections of base elements

I Ω not closed by union
F there are other ways to compute a least upper bound ...

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 36 / 1



Cut Admissibility: Algebraic Way

I set the interpretation of the atoms to be: ~A� = dAe

Key Theorem

For any formula A , ~A� = dAe.

I what do we have ?

Completeness
if ~A� ≤ ~B� in all models, then A ` B.

F (trivial) A ∈ dAe
F dAe = ~A� (Key Theorem)
F ~A� ⊆ ~B� (Hypothesis)
F ~B� = dBe (Key Theorem)
F means A ` B
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Cut Admissibility: Algebraic Way

I set the interpretation of the atoms to be: ~A� = dAe

Key Theorem

For any formula A , ~A� = dAe.

I what do we really need ?

Completeness
if ~A� ≤ ~B� in all models, then A ` B.

F

F A ∈ ~A� (Key Theorem)
F ~A� ⊆ ~B� (Hypothesis)
F ~B� ⊆ dBe (Key Theorem)
F means A ` B
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Cut Admissibility: Algebraic Way
I Ω contains arbitrary intersections of base elements.

Base Elements
dAe = {Γ | Γ ` A }

I ≤ is ⊆. Gives a lattice.
I it is also a Heyting algebra
I set the interpretation of the atoms to be: ~A� = dAe

Key Theorem

For any formula A , ~A� = dAe.

I what do we have ?

Completeness
if ~A� ≤ ~B� in all models, then A ` B.

Proof: A ∈ dAe = ~A� ⊆ ~B� = dBe.
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Cut Admissibility: Algebraic Way

I Ω contains arbitrary intersections of base elements.

Base Elements
dAe = {Γ | Γ `∗ A }

I ≤ is ⊆. Gives a lattice.
I it is also a Heyting algebra (⇒ property difficult)
I set the interpretation of the atoms to be: ~A� = dAe

Key Theorem

For any formula A , A ∈ ~A� ⊆ dAe

I Similarities with Reducibility Candidate-valued models (logical
relations)

NE ⊆ RA ⊆ SN (simplified)
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Cut Admissibility, Second Order: Algebraic Way
I Ω contains arbitrary intersections of base elements.

Base Elements
dAe = {Γ | Γ `∗ A }

I ≤ is ⊆. Gives a lattice.
I it is also a Heyting algebra (⇒ property difficult)
I set the interpretation of the atoms to be: ~A� = dAe

Key Theorem

For any formula A , Aσ ∈ ~A�φ ⊆ dAσe,
for any φ, σ such that σ(Xi) ∈ φ(Xi) ⊆ dσ(Xi)e

I Similarities with Reducibility Candidate-valued models (logical
relations)

NE ⊆ RA ⊆ SN (simplified)
~A�φ ∈ RAσ, for any φ, σ s.t. φ(Xi) ∈ Rσ(Xi)
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Application to Higher-Order Logics

I does not apply directly to higher-order logic
I intensional logic

P(>)<P(> ∧ >)

I ~>� , >

I V-complexes [Takahashi], [Prawitz], [Andrews]
I adapted to

F intuitionnistic case,
F linear case,
F the Deduction modulo theory expression of HOL (classical and

intuitionnistic),
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6. Opening the Box
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Constructivity of Proofs

I Tableaux: rebuild proof from scratch
I Henkin completeness ([Herbelin & Ilik])
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Computational Content of Algebraic Proofs

I switch to Natural Deduction
I more work existing

F Normalization by Evaluation
F all Kripke (-like)

I easier to compare
F and understand (at least, so did we thought)
F no problem with disjunction in Heyting algebra
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What Had to be Done
I from Sequent Calculus to Natural Deduction

I notion of cut-free proof

Cut-Free Proofs
A proof is neutral it is an elimination with cut-free premises and neutral
principal premiss. A proof is cut-free it is an introduction with cut-free
premises.

I show that constructions are still valid
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What Had to be Done
I from Sequent Calculus to Natural Deduction
I notion of cut-free proof

Cut-Free Proofs
A proof is neutral it is an elimination with cut-free premises and neutral
principal premiss. A proof is cut-free it is an introduction with cut-free
premises.

Γ `ne A
coerce

Γ `∗ A
A ∈ Γ ax
Γ `ne A

Γ `∗ A Γ `∗ B
∧I

Γ `∗ A ∧ B
Γ `ne A ∧ B

∧El
Γ `ne A

Γ `ne A ∧ B
∧Er

Γ `ne B

Γ `∗ A ∨Il
Γ `∗ A ∨ B

Γ `∗ B ∨Ir
Γ `∗ A ∨ B

Γ `ne A ∨ B A ,Γ `∗ C B ,Γ `∗ C
∨E

Γ `ne C

Γ,A `∗ B
⇒I

Γ `∗ A ⇒ B
Γ `ne A ⇒ B Γ `∗ A

⇒E
Γ `ne B

I show that constructions are still valid
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What Had to be Done
I from Sequent Calculus to Natural Deduction
I notion of cut-free proof

Cut-Free Proofs
A proof is neutral it is an elimination with cut-free premises and neutral
principal premiss. A proof is cut-free it is an introduction with cut-free
premises.

Γ `ne A
coerce

Γ `∗ A
A ∈ Γ ax
Γ `ne A

Γ `∗ A Γ `∗ B
∧I

Γ `∗ A ∧ B
Γ `ne A ∧ B

∧El
Γ `ne A

Γ `ne A ∧ B
∧Er

Γ `ne B

Γ `∗ A ∨Il
Γ `∗ A ∨ B

Γ `∗ B ∨Ir
Γ `∗ A ∨ B

Γ `ne A ∨ B A ,Γ `∗ C B ,Γ `∗ C
∨E

Γ `ne C

Γ,A `∗ B
⇒I

Γ `∗ A ⇒ B
Γ `ne A ⇒ B Γ `∗ A

⇒E
Γ `ne B

I show that constructions are still valid
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What had to be Done - 2

I works for first-order logic (probably more)

I formalize in Coq (propositional logic)
I extract the algorithm:

F limitations of Coq
F either we face proof-irrelevance
F or universe inconsistency

I we can at least observe inside Coq
I or have a potentially unsound algorithm
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What had to be Done - 2

I works for first-order logic (probably more)
I formalize in Coq (propositional logic)
I extract the algorithm:

F limitations of Coq
F either we face proof-irrelevance
F or universe inconsistency

I we can at least observe inside Coq
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On Examples

I how a⇒-cut is reduced

ax
A ,A ` A

⇒IA ` A ⇒ A
ax

A ` A ⇒EA ` A

B
ax

A ` A
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On Examples

I how a ∨-cut is reduced

ax
A ` A ∨IlA ` A ∨ A

ax
A ,A ` A

∨IrA ,A ` A ∨ A

ax
A ,A ` A

∨IlA ,A ` A ∨ A
∨EA ` A ∨ A

B ax
A ` A ∨IrA ` A ∨ A
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On Examples

I η-expansion

ax
A ∨ B ` A ∨ B

O. Hermant (MINES ParisTech) HDR – Complétude en logiques 2017, April 20th 47 / 1



On Examples

I η-expansion

ax
A ∨ B ` A ∨ B

ax
A ∨ B ,A ` A

∨IlA ∨ B ,A ` A ∨ B

ax
A ∨ B ,B ` B

∨IrA ∨ B ,B ` A ∨ B
∨EA ∨ B ` A ∨ B
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On Examples

I η-expansion, one more step

ax
A ∨ B ` A ∨ B

ax
A ∨ B ,A ,A ∨ B ` A

∨IlA ∨ B ,A ,A ∨ B ` A ∨ B
⇒I

A ∨ B ,A ` (A ∨ B)⇒ (A ∨ B)

ax
A ∨ B ,B ,A ∨ B ` B

∨Ir
A ∨ B ,B ,A ∨ B ` A ∨ B

⇒I
A ∨ B ,B ` (A ∨ B)⇒ (A ∨ B)

∨E
A ∨ B ` (A ∨ B)⇒ (A ∨ B)

ax
A ∨ B ` A ∨ B

⇒E
A ∨ B ` A ∨ B
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Conclusion

A lot of domains to which apply those techniques
I logics with constraints (higher order)
I polarized Deduction Modulo Theory

F model theory
F theoretical results
F tools

I this is all first order, no dependent types
F λΠ-calculus Modulo Theory
F Dedukti
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