
“Advanced” React Native
Emily Tripoul

Meta!

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

What is React Native

• React native is a front end Framework for mobile development
• Front end = What the user see, interact with, and download&execute on their

phone (or browser)
• Back end = What runs on a distant server. The user does not have full power

to interact with it. The interaction are limited to a specific interface (API Rest)
• Framework = A library that controls how you write your code. You need to fit

the rules of the library.

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

NPM, Node, and the Javascript ecosystem

• Javascript runs in a browser
• Node.js allows running javascript outside of the browser
• è Creating Javascript application
• Similar to Java Virtual Machine

• A Node.js application or library is called a Package

Node.js Quiz

• Which one can interact directly with the file system?
• Node.js
• Your Browser
• Both

• Which one can act as a Server?
• Node.js
• Your Browser
• Both

• Which one can act as a Client?
• Node.js
• Your Browser
• Both

Node.js Quiz

• Which one can interact directly with the file system?
• Node.js è FileSystem API enables access to every file
• Your Browser è LocalFileSystem API has limited access to only the current website

data
• Both

• Which one can act as a Server?
• Node.js è Yes! Express is a Node.JS server similar to Flask
• Your Browser è No
• Both

• Which one can act as a Client?
• Node.js è Yes
• Your Browser è Yes
• Both

Npm & npx

• Npm is a package manager
• Npm allows downloading javascript code written by other developer
• It’s similar to pip install for python or apt-get on linux

• Npm also allows configuring the options to run the package
• npm run my-package

• Npx is a shorthand for npm run
• npx my-package

{
"name": ”Emily-secret-project",
"version": "1.0.0",
"scripts": { ”my-package": "./node_modules/my-package/bin/" }

}

Npm, npx, & react

• npm install è Install the packages required for react-native
• React native server, React native compiler

• npx react-native start è This starts the react native
compiler
• npx react-native run-android è Use the react native

compiler, connect to the phone, and launch the android app

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

Typical Architecture of a React Native
application

React native
IOS WebServer

(Flask)
Database

(PostgresSQL/MySQL)

React native
Android

Web page
RE

ST
 A

PI

Front end Back end

Typical Architecture of a React Native
application

React native
IOS WebServer

(Flask)
Database

(PostgresSQL/MySQL)

React native
Android

Web page
RE

ST
 A

PI

Static asset storage
(Images, Logs)

Front end Back end

Typical Architecture of a React Native
application

React native
IOS WebServer

(Flask)
Database

(PostgresSQL/MySQL)

React native
Android

Web page
RE

ST
 A

PI

Static asset storage
(Images, Logs)

Content Delivery
Network

(Flask for us)

Front end Back end

Typical Architecture of a React Native
application

React native
IOS WebServer

(Flask)
Database

(PostgresSQL/MySQL)

React native
Android

Web page
RE

ST
 A

PI

Static asset storage
(Images, Logs)

Content Delivery
Network

(Flask for us)

Front end Back end

The user can change this

My custom app

Where is the application logic?

Front end (React Native)
• Display the login page for

logged out users
• What are the action the user

can take?

Back end (Flask)
• Is the login correct?

• Can the user actually do
them?

Where is the application logic?

Front end (React Native)
• Display the login page for

logged out users
• What are the action the user

can take?

Back end (Flask)
• Is the login correct?

• Can the user actually do
them?

Conclusion
• The validation logic should always be on the server
• The application logic is often duplicated

Quick run into the TP

Structuring a React Native App
App.js

Root.react.js
Header.react

LoggedOutView.react

Loggin.react

KivTextInput.react

KivTextInput.react

Button Button

React native app folder structure

• Root.react è Handles the main routing between logged in/ logged
out view; Stores the credentials
• LoggedOut/
• LoggedOutView.react è Handles the main routing between login & create

account
• Login.react
• CreateAccount.react

• Common/
• KivTextInput.react è Common component for the text input in react

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

Lifecycle of a function component –
Remember your last TP J

Props are the parameters that we pass to the component

Value is a state of UselessTextInput
setValue is a way to change the state of Value
Props.onChangeText is a props of MyAwesomeTextInput

onChangeText and value are props of TextInput

Lifecycle of a function component –
Remember your last TP J

Props are the parameters that we pass to the component

Value is a state of UselessTextInput
setValue is a way to change the state of Value
Props.onChangeText is a props of MyAwesomeTextInput

onChangeText and value are props of TextInput

We create a hierarchy of Components:
MyAwesomeTextInput contains a TextInput

Lifecycle of a function component
UserStory : The User input their name in a Text Input

1. The User Input their name in the TextInput

Lifecycle of a function component
UserStory : The User input their name in a Text Input

1. The User Input their name in the TextInput to ‘emily’
2. [Native] The callback onChangeText is called with

‘text=emily’

Lifecycle of a function component
UserStory : The User input their name in a Text Input

1. The User Input their name in the TextInput to ‘emily’
2. [Native] The callback onChangeText is called with

‘text=emily’
3. setValue(text); => We want to update value to ‘Emily’

This will happen on the next update of the
react component

Lifecycle of a function component
UserStory : The User input their name in a Text Input

1. The User Input their name in the TextInput to ‘emily’
2. [Native] The callback onChangeText is called with

‘text=emily’
3. setValue(text); => We want to update value to ‘Emily’

This will happen on the next update of the
react component

4. Props.onChangeText() => We call another callback
defined in the context where MyAwesomeTextInput
is used.

è This is called bubbling up callbacks.

Lifecycle of a function component
UserStory : The User input their name in a Text Input

Be careful of setValue / value usage!

Lifecycle of a function component
UserStory : The User input their name & password

Lifecycle of a function component
UserStory : The User input their name & password

Requirements:
- 2 MyAwesomeTextInput
- 1 Button
- 1 props function `onConnect` called when the

user click the button

Lifecycle of a function component
UserStory : The User input their name & password

Requirements:
- 2 MyAwesomeTextInput
- 1 Button
- 1 props function `onConnect` called when the

user click the button

What does `onConnect` do?
1. Call the server sendRequest to /api/login
2. Parse the response
3. Either

a. Store the token locally
b. Display an error message “Bad password”

Composing our components

Root

Props:

States:
- connectionToken

Components:
- MyLoginPassword
- MyLoggedInPage

MyLoginPassword

Props:
- onConnect

States:
- Login
- password

Components:
- 2 MyAwesomeTextInput
- Button

MyAwesomeTextInput

Props:
- onChangeText

States:
- value

Components:
- TextInput

Composing our components

Root

Props:

States:
- connectionToken

Components:
- MyLoginPassword
- MyLoggedInPage

MyLoginPassword

Props:
- onConnect

States:
- Login
- password

Components:
- 2 MyAwesomeTextInput
- Button

MyAwesomeTextInput

Props:
- onChangeText

States:
- value

Components:
- TextInput

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

Handling Views
App.js

Root.react.js
Header.react

LoggedOutView.react

Loggin.react

KivTextInput.react

KivTextInput.react

Button Button

[tab, setTab] = useState(‘login’)

return tab == ‘login’
? <Login />
: <CreateAccount />

if(tab == ‘login’) {
return <Login />;

} else {
return <CreateAccount />;

}

Handling Views

setTab(‘login’)

setTab(‘create_account’)

The call is passed down to each button via “props”

Parent:
- <Login onCreateAccount={() => setTab(‘create_account’) />

Login.react:
- <Button onPress={props.onCreateAccount} />

Breaking down a large file

What to break down?
- Large files (>100 lines)
- Functions used everywhere

(sendRequest)
- Components used multiple times

(MyAwesomeInput)

Extreme:
1 file 1 react component
1 file 1 function

Breaking down a large file

How I break down my files

core/
sendRequest.js
MyAwesomeTextInput.react.js

loggedOut/
MyLoginPage.react.js

loggedIn/
MySuperCoolApp.react.js

Root.react.js => switch(tab)
App.js

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

Data Fetching on action

The user click a button
1. è Fetch data
2. Use the data fetched and

update the component state
3. è re-render the component

with the fetched data

Data Fetching on render
Example: loading a list of users
Fetch the data during the rendering step?

This does not work as we don’t know when to fetch the data: any state or props
change can trigger a render

Data Fetching on render
Example: loading a list of users
Fetch the data during the rendering step?

This does not work as we don’t know when to fetch the data: any state or props
change can trigger a render

We need a way to specify when we want to execute an action during
component rendering è useEffect

useEffect runs after the component rendering and only if specific variables are
changed

Data fetching on render
getAllUsersRequest fetch the user on
the server

getAllUsersRequest updates the state
users
è We render the component again

useEffect ensures that we only fetch
new data when ‘filter’ is updated

Be careful of when data is getting fetched!

1. Render the main view
2. Fetch the users id
3. Render the list of user id (let’s say 10 users)
4. Fetch each user data

Be careful of when data is getting fetched!

1. Render the main view
2. Fetch the users id
3. Render the list of user id (let’s say 10 users)
4. Fetch each user data

èTotal 11 fetch! The app feels slow.
èSolution, fetch as much as you can, as soon as you can (On step 2 for

example)

Rappel Javascript

• User interface (UI) is highly asynchronous : We use callbacks & promise

Fetch(‘http://0.0.0.0/my_entrypoint’,
{method:’GET’})

@app.route(‘/my_entrypoint’, methods=[‘get’])
def get_my_data():

return jsonify({‘data’:4})

.then(response => response.json())

Rappel Javascript

• User interface (UI) is highly asynchronous : We use callbacks

Fetch(‘http://0.0.0.0/my_entrypoint’,
{method:’GET’})

@app.route(‘/my_entrypoint’, methods=[‘get’])
def get_my_data():

return jsonify({‘data’:4})

.then(response => response.json())

.then(response => { doSomething();}})

TP: Build an authentication system

• Use multiple panel è useState
• Load data on render è useEffect
• Store the login & password credentials in the right place è

Application architecture

TP: Build an authentication system

Lifecycle of a function component

Initialisation
1. Set the initial value of

props
2. Set the initial values of

useState

Props are the parameters that we pass to the component

Lifecycle of a function component

Initialisation
1. Set the initial value of

props
2. Set the initial values of

useState

Props are the parameters that we pass to the component

Value is a state of UserlessTextInput
setValue is a way to change the state of Value
onChangeText and value are props of TextInput

Lifecycle of a function component

Initialisation
1. Set the initial value of

props
2. Set the initial values of

useState

Mounting = storing the
component in memory
1. Execute code before JSX
2. Render the component

Lifecycle of a function component

Initialisation
1. Set the initial value of

props
2. Set the initial values of

useState

Mounting = storing the
component in memory
1. Execute code before JSX
2. Render the component

Updating
1. The internal state is

updated
1. Via props
2. Via setState

2. Execute code before JSX
3. Render the component

Lifecycle of a function component

Initialisation
1. Set the initial value of

props
2. Set the initial values of

useState

Mounting = storing the
component in memory
1. Execute code before JSX
2. Render the component

Updating
1. The internal state is

updated
1. Via props
2. Via setState

2. Execute code before JSX
3. Render the component

Unmounting = remove the
component from memory

Plan

1. Quid est React Native?
2. What is npm?
3. Architecture of a React Native App
4. LifeCycle of a react component
5. Practical use cases

Life cycle of a useless input

Life cycle of a useless input

1. Initialize
1. Value = `initial value`

Life cycle of a useless input

1. Initialize
1. Value = `initial value`

2. Mount
1. Render the component

TextInput with value
‘initial value’

Life cycle of a useless input

1. Initialize
- Value = `initial value`

2. Mount
- Render the component

3. User interact with the
input è onChangeText
- Triggers the lambda

callback
- Calls setValue(text)
- Triggers a new render with

the updated value

Life cycle of a useless input

1. Initialize
- Value = ‘Useless

Placeholder’
2. Mount

- Render the component
3. User interact with the

input è onChangeText
- Triggers an update with a

new value={text}
4. The parent component

stops loading the
component => Unmount

Handling error state
We use isCorrect to
conditionally display the error
message.

This can be used to validate
data or do a specific action

