Models for Normalization(s)

Olivier HERMANT

11 Mars 2008

Natural Deduction: the logical framework

» first-order logic: function and predicate symbols, logical
connectors: A, Vv, =, -, and quantifiers v, 3.

Even(0)
vn(Even(n) = Odd(n + 1))
Vn(Odd(n) = Even(n + 1))

Natural Deduction: the logical framework

» first-order logic: function and predicate symbols, logical
connectors: A, Vv, =, -, and quantifiers v, 3.

Even(0)
vn(Even(n) = Odd(n + 1))
Vn(Odd(n) = Even(n + 1))

» asequent:
hyp. conc.
—_— /=
r r A

» rules to form them: natural deduction (or sequent calculus)

» framework: intuitionnistic logic (classical, linear, higher-order,
constraints ...)

Deduction System : natural deduction (NJ)

» A deduction rule:

N-A N B
FrN-AAB
» introduction and elimination rules

I_’AFAaxmm
M-A FFBA r'-AAB I'FA/\B/\e2
rN-AAB Mr-A B
MA+B . r-A=B N A

- -e
rrA=B B =
I—FVXA[X]Ve any t M Al V-i, x free
rrAg oW Fr VXA

Example: 1

VxP(x) + P(0) A P(1)

Example: 1

VxP(x) + P(0) VxP(x) + P(1)

VxP(x) - P(0) A P(1) A

Example: 1

VxP(x) + YXP(x) VxP(x) F YXP(x
© TVxP(x) P(0) VxP(x)r P() " ©
VxP(x) + P(0) A P(1) A

Example: 1

axiom

VxP(x) + YXP(x) VxP(x) + VxP(x) axiom
YxP(x) + P(0) VxPO)F P(1) " °
VxP(x) + P(0) A P(1) A-i

Deduction modulo: allowed rewriting

» General form (free variables are possible):

| —>r

Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

> rewriting on terms:

x+S(y) — S(x+y)

Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

» rewriting on terms:
x+S(y) = S(x+y)
» and on propositions (predicate symbols):
xxy=0-x=0vy=0

» advantage: expressiveness

Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

» rewriting on terms:
X+ S8(y) = S(x+vy)
» and on propositions (predicate symbols):
xxy=0-x=0vy=0

» advantage: expressiveness
» we obtain a congruence modulo R (chosen set of rules): =

Deduction modulo: allowed rewriting

» General form (free variables are possible):
| —>r

» use: We replace t = ol by or (unification). Rewriting could be
deep in the term.

» rewriting on terms:
X+ S8(y) = S(x+vy)
» and on propositions (predicate symbols):
xxy=0-x=0vy=0

» advantage: expressiveness
» we obtain a congruence modulo R (chosen set of rules): =
» deduction rules transformation:

axiom TAFA becomes TArB axiom, A = B

Deduction modulo : natural deduction modulo - first
presentation

I',ArAaXIOm

A FFBAi Fr'-AAB FkA/\BAe2

Fr'-AAB Mr-A +B
A+rB ' A= B A

g =-e

' TrAa=8B T+B

I-FVXA[X]Ve any t MrAK] V-i, x free

rrAg oW Cr VXA

Deduction modulo : first presentation

Add then the following conversion rule:

Deduction modulo : natural deduction modulo, reloaded

FA FBaxiom,A =B

W/\-i,CEAAB %/\-eLCEAAB %/\-eZCEA/\B
ﬁ—i,CEAAB% rre THA e c=AnB
I’rrFAéx] V-i, x free,B = YxA[x] FF:AB[t] V-e, any t, B = YXA[x]

Example: 3

» consider the rewriting system R:

P(0) — A
P(1) — B

VxP(x)rAAB

Example: 3

» consider the rewriting system R:
P(0) — A
P(1) — B

VxP(x)+ A VxP(x) + B
VxP(x)rAAB

A-i

Example: 3

» consider the rewriting system R:

P(0O) — A
P(1) — B

VxP(x) F YXP(x) VxP(x) F YXxP(x)
VxP(x)+ A VxP(x) + B
VxP(x)-AAB

Example: 3

» consider the rewriting system R:

P(0) —» A
P(1) — B

VxP(x) + YxP(x) VxP(x) + YXP(x)
conv VxP(x) + P(0) VxP(x) + P(1) conv
VxP(x) F A VxP(x) + B

VxP(x)+AAB

Example: 3

» consider the rewriting system R:

P(0O) — A
P(1) — B

VxP(x) F YXP(x) VxP(x) F YXxP(x)
VxP(x)+ A VxP(x) + B
VxP(x)-AAB

Example: 3

» consider the rewriting system R:

P(O) —» A
P(1) — B
aXI\(;m VxP(x) + YXP(x) VxP(x) F YXP(x) 3X|0m
A VxP(x)+ A VxP(x) + B \ A
-r

VxP(x)-AAB

A Cut: a detour

NA+B
N-A lINrA=>B
B

=-i
=-e

» showlrAandlLA+B
» then, you have showed I' + B
» it is the application of a lemma.

A cut: a detour

7T T2

M- A B

- AAB
MN-A

A-i
A-€

General pattern of a cut: an introduction rule, followed by an
elimination on the same symbol.
This is unnecessary, consider only 1.

US|
N-A

A cut: a detour

And in the other proof:

T
0 NA+B o
rFA rFA=B
r+B =
Look in 7 what is happening:
axiom axiom axiom
LAArG TAARG LAAFGC
[NJ rules]
NnA+B

Now, assume C; = A (and no other C; is).

A cut: a detour

And in the other proof:

T
0 NA+B o
r-A rrA=B
r+B e
Look in 7 what is happening:
6 axiom axiom
AR C MAvr G MAvrC,
[NJ rules]
N-B

Now, assume C; = A (and no other C; is). We eliminated A from the
hypothesis. n is directly a proof of I' + B replace uses of A (nb: axioms)
by 6. In clear: don’t use the lemma, reprove its instances.

A cut: a detour

In deduction modulo:

T
0 NA+-B oA
Y e =-i,C=A=1B

=Y =-e,C=A"=>B

» need for cut elimination: the heart of logic.

A cut: a detour

In deduction modulo:

T
0 NNA+B . L _
Y e =-i,C=A=1B

=Y =-e,C=A"=8B

» need for cut elimination: the heart of logic.
» two main methods:

» semantic: cut admissibility.
» syntactic: proof normalization.

A cut: a detour

In deduction modulo:

T
0 NA+-B oA
Y e =-i,C=A=1B

=Y =-e,C=A"=>B

» need for cut elimination: the heart of logic.

» two main methods:

» semantic: cut admissibility.
» syntactic: proof normalization.

» indecidable, need for conditions on R.

The semantical method

soundness
Mr-A FEA
Gentzen completeness

Tait-Girard
Dowek-Werner

r|‘cfA

The semantical method

soundness
Fr-A F=A

Gentzen
Tait-Girard
Dowek-Werner

r|'cfA

Heyting algebras

» a universe
» an order

Heyting algebras

v

a universe Q

v

an order

\{

operations on it: lowest upper bound (join: U), greatest lower
bound (meet: N).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<auUub a<candb<cimpliesaub<c

v

like Boolean algebras, with weaker complement

an example

» R and open sets (infinite g.l.b. is not infinite intersection)

an example

» R and open sets (infinite g.l.b. is not infinite intersection)
» complement is weaker:

o
>

-A

|
8
8

A model
» adomain D to interpret the first-order terms.
» a Heyting algebra
» a interpretation function for each symbol:

D" > D
P:D" - D
» that we extend readily to all terms and all formulae and terms:
W), = 6(x)
(F(trs---)y o= T(((t)g 5 (80)3))
(Pt t))y = P(((t)5 -+ (t)3))
(AAB), = (A)sn(B)y

A model

» adomain D to interpret the first-order terms.
a Heyting algebra
a interpretation function for each symbol:
D" > D
P:D" - D
that we extend readily to all terms and all formulae and terms:
(x)g = o(x)

A

(F(ts--- s ta))g = H(((t)gs -+ (tn)g))

(P(tr.- o ta))y = P05+ - (10)3))
(AAB), = (A);n(B);

v

v

v

v

degree of freedom: how to choose fand P.
in deduction modulo, additional condition:

A =g B implies A* = B*

v

Cannonical model: Lindenbaum algebra

v

defined for provability

v

elements of Q: the equivalence class of formulae [A].

[A]:={B| +r A & B}

\{

meet: [A] N [B] iff [A A B]
order: [A] < [B]iff+ A= B

v

Cannonical model: Lindenbaum algebra

v

defined for provability

v

elements of Q: the equivalence class of formulae [A].

[A]:={B| +r A & B}

\{

meet: [A] N [B] iff [A A B]
order: [A] < [B]iff+ A= B
and so on ... (domain D: open terms).

v

v

Cannonical model: Lindenbaum algebra

» defined for provability
» elements of Q: the equivalence class of formulae [A].

[A]:={B| +r A & B}

» meet: [A] N [B]iff [A A B]

» order: [A] < [B]iffrA=B

» and so on ... (domain D: open terms).

» with this model, one proves completeness

Cannonical model: Lindenbaum algebra

» defined for provability with cuts
» elements of Q: the equivalence class of formulae [A].

[A]:={B| + A & B}

» “intersection”: [A] N [B] iff [A A B]
» “order”: [A] < [B]iffr A = B
» and so on ... (domain D: open terms)

» with this model, one proves completeness: cuts are needed
for transitivity of the order.

Cut-free cannonical model

v

defined for provability without cuts
elements of Q2: the contexts proving A cut-free.

[A] == {[[T+ A)

the [A] are the basis. Saturate then Q with their (arbitrary)
intersection and pseudo-union (l.u.b.):

aub =)[A]lac[Aland b c[A]

order:a<biffach
andsoon ...
with this model, one proves cut-free completeness.

Deduction modulo

» what about the domain ?
» what about the validity of the rewrite rules ?

A =g B implies A* = B*

Deduction modulo

» what about the domain: it depends on R - usually the open
term is sufficient.

» what about the validity of the rewrite rules: choose carefully
the interpretation of predicates and function symbols,
depends on R.

An example: Simple Theory of Types

v

aka higher-order (intuitionistic) logic.

v

basic types o,¢, and arrow: 0 —» 0,0 — ¢, ...

v

constants of each type

v

application (t u) and A-abstraction or combinators: S, K

v

logical connectors: constants A: 0 - 0 — 0, ...
» e.g. we can form the formula: YP.P

cut admissibility in STT (no modulo)

» problem number one, circularity:

(D = 1)

FY.P(P = P)

cut admissibility in STT (no modulo)

» problem number one, circularity:

+F(YP.(P= P) :> YP.(P = P))

FY.P(P= P)
» no more induction on the size of the formulae.

cut admissibility in STT (no modulo)

» problem number one, circularity:
» no more induction on the size of the formulae.
» solution, same as slide 32 of Dowek:

Define Ra: quantify over all Rg: Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that Rg € C.

cut admissibility in STT (no modulo)

» problem number one, circularity:
» no more induction on the size of the formulae.
» solution, same as slide 32 of Dowek:

Define Ra: quantify over all Rg: Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that Rg € C.

» define “semantic candidates” [Okada] for (A)* without
induction:
{aeQ|Acac|A]}

cut admissibility in STT (no modulo)

» problem number one, circularity:
» no more induction on the size of the formulae.
» solution, same as slide 32 of Dowek:

Define Ra: quantify over all Rg: Circular

Avoid circularity: define C a priori, quantify over C instead,
Prove a posteriori that Rg € C.

» define “semantic candidates” [Okada] for (A)* without
induction:
{aeQ|Acac|A]}

» then quantify over all truth-values candidates. Identifies which
of the ais (A)*.

Cut admissibility in STT

» public ennemy Number 2: intensionality. In STT, as in AProlog:

P(A AA) « P(A)

Cut admissibility in STT

» public ennemy Number 2: intensionality. In STT, as in AProlog:
P(AAA)« P(A)

» implicates: although semantic truth value of A is in Q, its
domain of interpretation should not be €.

Cut admissibility in STT

» public ennemy Number 2: intensionality. In STT, as in AProlog:
P(AAA)« P(A)

» implicates: although semantic truth value of A is in Q, its
domain of interpretation should not be Q.

» usual trick: pairing.

{aeQ|Aecac[A]}

Cut admissibility in STT

» public ennemy Number 2: intensionality. In STT, as in AProlog:
P(AAA)« P(A)

» implicates: although semantic truth value of A is in Q, its
domain of interpretation should not be Q.

» usual trick: pairing.

Do = {(A,a) | A ca C [A]}

Cut admissibility in STT

» public ennemy Number 2: intensionality. In STT, as in AProlog:
P(AAA)« P(A)

» implicates: although semantic truth value of A is in Q, its
domain of interpretation should not be Q.

» usual trick: pairing.
Do ={{A,a)|Acac[A]}
» interpret everything within those domains, e.g.:

A= {NAB,bY{A-B,AC,cy{n-B-C,bnc)))

Cut admissibility in STT

» public ennemy Number 2: intensionality. In STT, as in AProlog:

P(A AA) « P(A)

v

implicates: although semantic truth value of A is in €, its
domain of interpretation should not be Q.

v

usual trick: pairing.
Do ={{A,a)|Acac[A]}
» interpret everything within those domains, e.g.:

A= {NAB,bY{A-B,AC,cy{n-B-C,bnc)))

v

then, “extract” the truth value:

w(A”) = m2(A”)

STT in deduction modulo

» same types, same symbols A, VY, - - -
» application:

K-x-y - x
S-x-y-z - (xz)(yz)

» how to express YP.P in a first-order setting ?

STT in deduction modulo
» same types, same symbols A, VY, - - -
» application:
K-x-y - x
S-x-y-z - (xz)(yz)

» how to express YP.P in a first-order setting ?
» solution: embed P into &(P), and define:
gA-A-B) — &(A)Arg(B)
s(VA) — Vx.g(AX)

STT in deduction modulo

» same types, same symbols A, VY, - - -
application:

v

K-x-y - x
S-x-y-z - (xz)(yz)

v

how to express YP.P in a first-order setting ?
solution: embed P into £(P), and define:
gA-A-B) — &(A)Arg(B)
s(VA) — Vx.g(AX)

v

v

duplication of “connectors™: A (of the type hierarchy)
connecting terms and A, connecting propositions.

two “formulae”™: P, a term, and &(P), at the logical level.
¢ is the only predicate symbol.

v

v

STT in deduction modulo
» same types, same symbols A, VY, - - -
» application:
K-x-y - x
S-x-y-z - (xz)(yz)

» how to express YP.P in a first-order setting ?
» solution: embed P into &(P), and define:

gA-A-B) — &(A)Arg(B)
s(VA) — Vx.g(AX)

» duplication of “connectors”™: A (of the type hierarchy)
connecting terms and A, connecting propositions.

» two “formulae”: P, a term, and &(P), at the logical level.

» ¢ is the only predicate symbol.

» ¢ embeds in the syntax the w is in the semantics: separates
truth value and propositional content.

The normalization method(s)

v

Curry-Howard: proofs = programs

v

formulas = types
proof tree = typing tree
at the heart of proof assistants (PVS, Coq, Isabelle, ...)

v

v

v

when a program calculates, it performs a cut elimination
procedure.

The normalization method(s)

» Curry-Howard: proofs = programs

» formulas = types

» proof tree = typing tree

» at the heart of proof assistants (PVS, Coq, Isabelle, ...)

» when a program calculates, it performs a cut elimination
procedure.

» show that all typables function terminates.

Curry-Howard correspondence

» Notation for proofs. Give a name to each of the hypothesis:

r:X1 :A1,...,Xn:An

 adom TrmiAAB
Lx:Arx:A Frfst(r):A "¢
MNem A 7B . +7:AAB
i =T8RS e
o) ArB 1 Trsndx):A "¢
x:Arm:B . lena A t+7:A>B
Trxn:A=>B Fr(ar):B

Curry-Howard correspondence

» Notation for proofs. Give a name to each of the hypothesis:

r:X1 :A1,...,Xn:An

 adom TrmiAAB
Lx:Arx:A Frfst(r):A "¢
MNem A 7B . +7:AAB
g =t AAD e
Moy AAB " Trsnd(n):A
x:Arm:B . lena A t+7:A>B
Trxn:A=>B Fr(ar):B

» very similar to a type system

Curry-Howard correspondence

» Notation for proofs. Give a name to each of the hypothesis:

r:X1 :A1,...,Xn:An

 adom TrmiAAB
Lx:Arx:A Frfst(r):A "¢
MNem A 7B . +7:AAB
g =t AAD e
Moy AAB " Trsnd(n):A
x:Arm:B . lena A t+7:A>B
Trxn:A=>B Fr(ar):B

» very similar to a type system
» in deduction modulo, rewrite rules are silent:

MNen: A

N-n:B A=B

Cut elimination with proof terms

» Cut elimination is a process, similar to function execution.

MN-m A rl-ﬂ'gZB/\i
[F(my,m):ANB (> S
I+ fst((my,m2)) : A

Nx:Arnm:B)
Frr0:A Trixn.A—B :'e > T+{9/x)r:B
I (Ax.1)0: B

Cut elimination with proof terms

» Cut elimination is a process, similar to function execution.

MN-m A rl—ﬂngAi
[F(my,m):ANB (> S
I+ fst((my,m2)) : A

Nx:Arnm:B)
Frr0:A Trixn.A—B :'e > T+{9/x)r:B
I (Ax.1)0: B

» showing that every proof normalizes: the cut elimination
process terminates.

Normalization [Dowek,Werner]

» deduction modulo is high-level: reducibility candidates.

Normalization [Dowek,Werner]

» deduction modulo is high-level: reducibility candidates.

» A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

Normalization [Dowek,Werner]

» deduction modulo is high-level: reducibility candidates.
» A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

» to each formula A, associates a candidate [[A]. Show that if
[+m:Athenne[A]

Normalization [Dowek,Werner]

» deduction modulo is high-level: reducibility candidates.

» A reducibility candidate: a set of proofs that are normalizing
(and some other properties).

» to each formula A, associates a candidate [[A]. Show that if
[+m:Athenne[A]

» in deduction modulo, if A = B, additional constraint:

[Al = [BI

Towards “usual” semantics

» such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

Towards “usual” semantics

» such methods are defined in deduction modulo (Heyting
arithmetic, higher-order logic, Zermelo’s set theory, ...)

» the sets of candidates have a structure: pseudo Heyting
algebras, or truth value algebras (TVA) [DoweK].

Heyting algebras

a universe Q

v

v

an order

\{

operations on it: lowest upper bound (join: U), greatest lower
bound (meet: N — intersection).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<aub a<candb<cimpliesaub<c

v

like Boolean algebras, with weaker complement

pseudo-Heyting algebras, aka Truth Values Algebras

> a universe Q
» apre-order: a < b and b < a with a # b possible.

» operations on it: lowest upper bound (join: U — pseudo union),
greatest lower bound (meet: N — intersection).

anb<a anb<b c<aandc<bimpliesc<anb
a<aUb b<aub a<candb<cimpliesaub<c

Candidates form a pseudo-Heyting algebra

\4

T=1=8N
[ATNIBI =1A ABI]
» and so on.

v

» pre-order: trivial one.
But [A A A] <= [[A] only.

v

Super consistency

» consistency: there exists a model.

» condition in DM: A = B implies [A] = [B]

Super consistency

» consistency: there exists a model.

» super-consistency: for every TVA, there exists a model
(interpretation): construction has to be uniform.

» condition in DM: A = B implies [A] = [B]

Super consistency

» e.g. higher-order logic is super-consistent:

M, = ¢ (dummy)
Mo — Q
Moy = MM

Super consistency

v

e.g. higher-order logic is super-consistent:
M, = ¢ (dummy)

Mo == Q

Moy = MM

v

hence, it has a model in the
pseudo-Heying Algebra of candidates

v

I+ m: Aimplies m € [A].

v

the system enjoys proof normalization.

Towards usual semantics

soundness
Fr-A F=A

Gentzen
Tait-Girard
Dowek-Werner

r|'cfA

Super consistency

» e.g. higher-order logic is super-consistent:

M, = ¢ (dummy)
Mo == Q
Moy = MM

Super consistency

» e.g. higher-order logic is super-consistent:

M, = ¢ (dummy)
Mo == Q
Moy = MM

» hence, it has a model in the pseudo-Heying Algebra
of sequents
[[AT = {I' + Bsuch that ...}

Towards usual semantics

» How to transform a TVA into a Heyting algebra.

» assume we have a model M, [_] in the previous
pseudo-Heyting algebra of sequents.

» first idea: pseudo-Heyting to Heyting by quotienting.

Towards usual semantics

How to transform a TVA into a Heyting algebra.

» assume we have a model M, [_] in the previous
pseudo-Heyting algebra of sequents.

first idea: pseudo-Heyting to Heyting by quotienting.
trivial pseudo order implies T = L.

v

v

v

The link: fibering

define

[A]g ={B1,---,By|VA, it A+ B € [B], then A+ A € [Ally}

» [A]ls contains sequents A + B. Extract the contexts
corresponding to A.

The link: fibering

define

[A]S = {B1,---,Ba | VA, if A+ B € [B], then A + A € [Al,)

» [A]ls contains sequents A + B. Extract the contexts
corresponding to A.

» this forms a Heyting algebra ([A]: basis)

The link: fibering

define

[A]g ={B1,---,By|VA, it A+ B € [B], then A+ A € [Ally}

» [A]ls contains sequents A + B. Extract the contexts
corresponding to A.

» this forms a Heyting algebra ([A]: basis)

» interpretation of formulas in it:

A" = [Al§

Wait a minute !

> interpretation ? [A]{.

Wait a minute !
> interpretation ? [A]{.
» Need for one single substitution. hybridization: o X ¢.

D=7 xM

Wait a minute !
> interpretation ? [A]{.
» Need for one single substitution. hybridization: o X ¢.
D=7 xM
» interpretation for symbols
/f\D(<t1ad1 >a'"’<tna dn)) = <f(t1"“7 tn)e?M(d1a"" dn)>
PD(<t1ad1>a“'a<tn’ dn)) = [(t1 /X1,---,tn/xn)P](d1/x1 dn/Xn)

.....

Wait a minute !

interpretation ? [A]7.
Need for one single substitution. hybridization: o X ¢.

D=7 xM

v

v

» interpretation for symbols

P>ty i)y oy (o dn)) = (F(t, s), P, s d))
ﬁD(<t1ad1>a“'a<tn’ dn)) = [(t1 /X1,---,tn/xn)P](d1/x1 dn/Xn)

.....

» pointwise application

(t,vyolt, vy =((tt'),(w))

Wait a minute !

interpretation ? [A]7.
Need for one single substitution. hybridization: o X ¢.

D=7 xM

v

v

» interpretation for symbols

P>ty i)y oy (o dn)) = (F(t, s), P, s d))
ﬁD(<t1ad1>a“'a<tn’ dn)) = [(t1 /X1,---,tn/xn)P](d1/x1 dn/Xn)

.....

.....

» pointwise application

(t,vyolt, vy =((tt'),(w))

» Need to prove [A A B] = [A] N [B] for (A A B)* to be defined.
Usually, only:

AABelAlN[B]C[AAB]

Wait a minute !
interpretation ? [A]7.
Need for one single substitution. hybridization: o X ¢.

D=7 xM

v

v

» interpretation for symbols

P>ty i)y oy (o dn)) = (F(t, s), P, s d))
ﬁD((had‘I >a~'~a<tna dn)) = [(t1 /X1,---,tn/xn)P](d1/x1 dn/Xn)

.....

» pointwise application
(t,vyolt, vy =((tt'),(w))

» Need to prove [A A B] = [A] N [B] for (A A B)* to be defined.
Usually, only:

AABelAlN[B]C[AAB]

» proof resembles the proof for normalization.

Cut admissibility

Assume I + A has a proof (with cuts)
» [I] < [A] in D by (usual) soundness
» el
» e [A] implies [+¢r A
» Q.E.D.

Cut admissibility

Assume I + A has a proof (with cuts)
» [I] < [A] in D by (usual) soundness
el
e [A]implies T +¢r A
Q.E.D.
compared to: I + 7 : A implies 7 € [A], and hence 7 is SN.

v

v

v

v

soundness

r-A F=A
Gentzen ‘e(\ess
Tait-Girard ooﬂ\‘)\e
Dowek-Werner o™

r|'cfA

» This diagram does not commute in deduction modulo.

Further work

» what is the computational content of this algorithm ?

» there is normalization by evaluation work, but in a Kripke
style: links ?

» do the proof terms (candidates) always have a “pseudo-”
structure ?

» realizing rewrite rule not with Ax.x (not silently), could recover
(some) normalization and make the previous diagram
commute again.

e A
N-n:B

1l
W

	Introduction
	Natural Deduction
	rewrite rules
	The cut

	The semantic method
	Normalization
	Curry-Howard correspondence
	Unification

