A Model-based cut-elimination proof in Deduction Modulo

Marktoberdorf

Olivier Hermant, INRIA, Paris http://pauillac.inria.fr/~hermant

Outline of the talk

- The deduction system
- Soundness and Completness
- Sketch of the the proof

3 Aug. 2003

1– Outline of the talk

•

Sequent Calculus modulo

With \mathcal{P} Peano's Axioms, prove that 2+2=4:

Reflexivity
$$\underline{\mathcal{P} \vdash S(S(S(S(0)))) = S(S(S(S(0))))}$$

$$\vdots$$

$$\underline{\mathcal{P} \vdash S(S(S(0))) + S(0) = S(S(S(S(0))))}$$

$$\vdots$$

$$\mathcal{P} \vdash S(S(0) + S(S(0))) = S(S(S(S(0))))$$

Replacing axiom with rewrite rule $x + S(y) \rightarrow S(x) + y$:

$$\frac{\text{Reflexivity}}{\vdash_{\mathcal{R}} S(S(0)) + S(S(0)) = S(S(S(S(0))))}$$

Adding rewrite rules:

- separates the computational content
- enhances performances of theorem provers
- adds power to theories
- allows to suppress some axioms

$$x * y = 0 \rightarrow (x = 0) \lor (y = 0)$$
$$(x + y) + z \rightarrow x + (y + z)$$
$$x * 0 \rightarrow 0$$

We rewrite terms or atomic propositions.

3 Aug. 2003

2– Sequent Calculus modulo

Definitions

A set of rewrite rules is confluent iff :

$$P \to^* P' \qquad \Rightarrow \qquad P' \to^* Q$$

$$P \to^* P'' \qquad \Rightarrow \qquad P'' \to^* Q$$

A set of rewrite rule is terminating (or normalizing) iff each reduction sequence is finite.

A model \mathcal{M} is a model of the rewrite rules iff :

$$P =_{\mathcal{R}} Q \Rightarrow |P|_{\mathcal{M}} = |Q|_{\mathcal{M}}$$

In the latter, we will consider only such models.

Problem: in the general case, cut elimination (and even consistency) doesn't hold:

$$A \rightarrow B \land \neg A$$

But for this case, holds:

$$A \rightarrow B \wedge A$$

We have to find a condition. Confluence and termination is not sufficient :

$$R \in R \longrightarrow \forall y ((\forall x (\neg x \in R \Rightarrow \neg x \in y)) \Rightarrow \neg R \in y)$$

3 Aug. 2003

2– Sequent Calculus modulo

Deduction rules

$$\frac{\Gamma, P \vdash \Delta \quad \Gamma \vdash P, \Delta}{\Gamma \vdash P, \Delta} \text{axiom} \qquad \qquad \frac{\Gamma, P \vdash \Delta \quad \Gamma \vdash P, \Delta}{\Gamma \vdash \Delta} \text{cut}$$

$$\frac{\Gamma, P \vdash \Delta}{\Gamma, P \vdash P, \Delta} \text{axiom} \qquad \frac{\Gamma, P \vdash \Delta}{\Gamma \vdash \Delta} \text{cut}$$

$$\frac{\Gamma, P, Q \vdash \Delta}{\Gamma, P \land Q \vdash \Delta} \land -1 \qquad \frac{\Gamma \vdash P, \Delta}{\Gamma \vdash P \land Q, \Delta} \land -r$$

$$\frac{\Gamma, \{t/x\}P \vdash \Delta}{\Gamma, \forall x P \vdash \Delta} \forall -1 \qquad \frac{\Gamma \vdash \{c/x\}P, \Delta}{\Gamma \vdash \forall x P, \Delta} \forall^* -r$$

$$\frac{\Gamma, \{t/x\}P \vdash \Delta}{\Gamma, \forall x \ P \vdash \Delta} \forall \text{-l} \qquad \qquad \frac{\Gamma \vdash \{c/x\}P, \Delta}{\Gamma \vdash \forall x \ P, \Delta} \forall^* \text{-r}$$

Some Rules of Sequent Calculus

Given \mathcal{R} a set of rewrite rules, we add two rules to Sequent Calculus :

$$\frac{\Gamma, P \vdash_{\mathcal{R}} \Delta}{\Gamma, Q \vdash_{\mathcal{R}} \Delta} \text{rewrite-l if } P =_{\mathcal{R}} Q$$

$$\frac{\Gamma \vdash_{\mathcal{R}} P, \Delta}{\Gamma \vdash_{\mathcal{R}} Q, \Delta} \text{rewrite-r if } P =_{\mathcal{R}} Q$$

 $=_{\mathcal{R}}$ is the reflexive-transitive-symmetric closure of \rightarrow .

3 Aug. 2003

3– Deduction rules

Hypotheses

We will consider a set of rewrite rules that is:

- confluent
- terminating
- compatible with a well-founded order having the subformula property.

Following Smullyan, we define the subformula as follow:

- A[t/x] is an immediate subformula of $\forall x \ A, \ A$ is an immediate subformula of $A \land B, \dots$
- Subformula is the transitive closure of the immediate subformula relation.

E.g. the rule $P[0] \to \forall x P[x]$ is not compatible with such an order, because $\forall x P[x] \succ P[0]$.

3 Aug. 2003

4– Hypotheses

(

Soundness, Completness, Cut Elimination

Theorem[Soundness] : If $\Gamma \vdash_{\mathcal{R}} \Delta$ (with possible cuts) then $\Gamma \models \Delta$.

 $\begin{tabular}{ll} \bf Theorem[Completness]: If \mathcal{T} is a cut free-consistent theory, it has a model. \end{tabular}$

Corollary[Cut elimination] : If $\Gamma \vdash_{\mathcal{R}} \Delta$ then $\Gamma \vdash_{\mathcal{R}}^{cf} \Delta$.

Proof : if $\Gamma \vdash \Delta$, by soundness, we have $\Gamma \models \Delta$, hence $\Gamma, \neg \Delta$ doesn't have a model.

By completness theorem, this means that $\Gamma, \neg \Delta$ is cut free-inconsistent, i.e. $\Gamma, \neg \Delta \vdash^{cf}_{\mathcal{R}}$.

3 Aug. 2003

5– Soundness, Completness, Cut Elimination

${\bf Completness}$

Lemma[Kleene] : Let $A =_{\mathcal{R}} \neg P$ be propositions. Id we have:

$$\Gamma, A \vdash^{cf}_{\mathcal{R}} \Delta$$

then we can construct a proof:

$$\Gamma \vdash^{cf}_{\mathcal{R}} P, \Delta$$

Lemma : A is a normal atom. If

$$\Gamma, A \vdash^{cf}_{\mathcal{R}} \Delta$$

$$\Gamma, A \vdash_{\mathcal{R}}^{cf} \Delta$$
$$\Gamma \vdash_{\mathcal{R}}^{cf} A, \Delta$$

we can construct a proof of:

$$\Gamma \vdash_{\mathcal{R}} \Delta$$

Proof: by induction on the structure of the proof.

3 Aug. 2003

6- Completness

Completion of a consistent theory \mathcal{T}

Put $\Gamma_0 = \mathcal{T}$, enumerate all the propositions of tha language:

$$A_0, ..., A_n, ...$$

 $A_0,...,A_n,...$ At each step, check if $\Gamma_n,A_n \not\vdash^{cf}_{\mathcal{R}}$ or not, and define Γ_{n+1} .

Take
$$\Gamma = \bigcup_{n=0}^{\infty} \Gamma_n$$

 Γ is complete, consistent, admits Henkin witnesses. (Moreover, it is a Hintikka set).

3 Aug. 2003

6- Completness

Constructing a Herbrand model

We follow Bachmair and Gantzingers' contruction.

- For each proposition we construct its formation tree.
- Each branch is finite thanks to the order.
- Set for each normal atom $|A|_{\mathcal{M}} = True$ iff $A \in \Gamma$.
- With the tree, we are able to define a truth value for each proposition.

3 Aug. 2003

6- Completness

Application: Quantifier-free rewrite systems

We consider only rules $A \to Q$ where Q doesn't contain quantifiers. We need confluence and termination of the set of rules.

The pair $\langle q, c \rangle$ is a well-founded order on normal terms.

- Extend it : $A \succ B$ if $A \downarrow \succ B \downarrow$ $A \downarrow = B \downarrow$ and $A \rightarrow^+ B$

Further work

- see what happen if we don't take the well-founded order (the only change is the model construction step).
- what is the link with strong normalization and pre-model construction
- extend this result to more powerful systems (HOL, CC)

3 Aug. 2003

8– Further work

Short bibliography

- R. Cori, D. Lascar, Logique Mathématique, 1993
- G. Dowek, Th. Hardin, Cl. Kirchner, Theorem Proving Modulo, 1998
- G. Dowek, B. Werner, Proof normalization modulo, 1998
- R. Smullyan, First Order Logic, 1968
- J. Stuber, A model-based completness proof of Extended Narrowing and Resolution, 2001

3 Aug. 2003

9– Short bibliography