

Measuring and Reducing Postgres Transaction Latency

(updated version)

Fabien Coelho

MINES ParisTech, PSL Research University

pgDay Paris - March 23, 2017

Talk Outline

2 Performance Comparisons

- Two Connection Costs
- Latency Pitfalls
- Throughput and Latency Control
- Three Storage Options
- Two Protocol Impacts
- Four Query Combination Tricks
- Reducting Server Distance
- Performance Scalability
- Miscellaneous Settings

1 Introduction

- Subject
- Typical Web Application
- Transaction Performance Definitions
- pgbench
- General Approach

3 Conclusion

- Latency and Throughput Wrap-Up
- Lessons Learned
- Contributions to Postgres

Subject

Postares Latency

F Coelho

Subject

Small OLTP

OnLine Transaction Processing

CRUD queries

data fit in shared buffers

RW. RO

WHERE pk=?

small, few GB

pabench builtins

Focus

performance with emphasis on latency

experiment & measure

and Motivation

interactive web app

do not assume!

latency performance : RW $\times 63$, RO $\times 219$

Typical Web Application

Postgres Latency

F. Coelho

Introductio

Subject Application

Definitions pgbench

Performance

Connection

Latency

Ctorogo

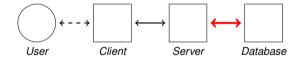
Storage

Combinatio

Distance Scalability

Miscellane

Conclusion


Wrap-Up
Lessons
Contributions

3-Tier Architecture

Client user acts on user-agent, sends to

Server process request, database operations to

Database stores and retrieves data

Database Operations

Connection

TCP/IP, SSL & AAA

■ Request-Response cycles

transfer, parse, plan, execute, transfer back

Transaction Performance

Postares Latency

F Coelho

Definitions

Definitions

Throughput operations per time unit usual approach, load measured in tps

Latency time for one operation

must fit application requirements

correlated

Comments

max vs enough

sensitive to many settings

throughput bottleneck & latency additivity

time & operations

tx/s

ms/tx

and contradictory

and vice-versa

net, soft & hard

deep voodoo!

Postgres Performance Swiss Army Knife

pgbench

Postgres Latency

F. Coelho

Subject
Application
Definitions
pgbench
Approach

Performance Connection

Rate & Limit Storage

Combination
Distance
Scalability

Miscellane

Conclusion Wrap-Up Lessons Contributions

Available Features

input SQL-like scripts with minimal client-side language options time to run, prepared, reconnections, ... parallelism threads, clients, asynchronous calls output statistical performance data

Caveats

long enough

several times

pedal-to-the-metal max speed test

warm-up, checkpoint and vacuum

reproducibility

not representative

Default TPC-B-like Transaction

pgbench -b tcpb-like

Postgres Latency

F. Coelho

Introduction
Subject
Application
Definitions
pgbench
Approach

Performance Connection Latency

Rate & Limit
Storage

Combinations
Distance
Scalability

Miscellaneo

Conclusion
Wrap-Up
Lessons
Contributions

■ TPC-B-like banking transaction

```
-- random ids and amount
\set aid random(1, 1000000 * :scale)
 set bid random(1, 1 * :scale)
set tid random(1, 10 * :scale)
set delta random(-5000, 5000)
-- actual transaction
BEGIN:
UPDATE pgbench_accounts
  SET abalance = abalance + :delta WHERE aid = :aid:
SELECT abalance
  FROM pgbench_accounts WHERE aid = :aid:
UPDATE pgbench_tellers
  SET thalance = thalance + :delta WHERE tid = :tid:
UPDATE pgbench_branches
  SET bbalance = bbalance + :delta WHERE bid = :bid:
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime)
  VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END:
```

Pattern

- 3 updates
- 1 insert
- 1 select

General Approach

Postares Latency

F Coelho

Approach

Experiment & Measure

RW or RO

- one-client runs
- independent tests
- final wrap up

unless otherwise stated one at a time change cumulative changes

Exploration

RW or RO

- two connection costs
- latency pitfalls
- throughput & latency control
- three storage options

- two protocol impacts
- four query combinations
- reducing server distance
- scalability and misc. stuff

F. Coelho

pabench

Connection

Rate & Limit

Miscellaneous

Wrap-Up

Performance Comparisons

Two Connection Costs

Connection Costs

pgbench -C

8 cores. 16 GB

Postares Latency

F Coelho

Connection

Miscellaneous

pgbench postgres IAN Client Server Initialization and Benchmarks

Client I AN

Server

1 Gbps 16 cores, 32 GB, HDD

pgbench -i -s 100

pgbench -T 2000 -C "host=server sslmode=require"

pgbench -T 2000 -C "host=server sslmode=disable"

pgbench -T 2000 "host=server sslmode=disable"

connection AAA

SSL negociation

transfers and transactions

Postgres 9.6.1

1.5 GB

36.1 tps 56.4 tps

105.4 tps

8.2 ms

10.0 ms

9.5 ms

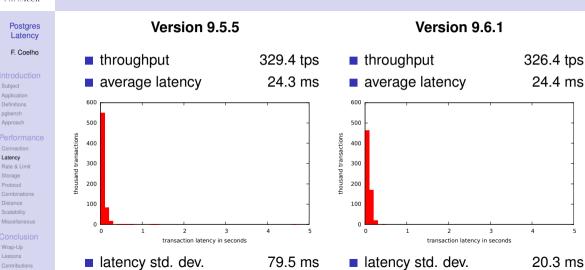
F. Coelho

pabench

Latency Rate & Limit

Miscellaneous

Wrap-Up


Performance Comparisons

Latency Pitfalls

Latency Comparison – 9.5 vs 9.6

pgbench -j 4 -c 8

Latency Comparison – 9.5 vs 9.6

Instant TPS

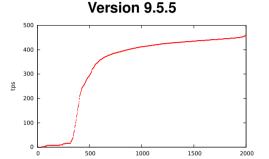
Postgres Latency

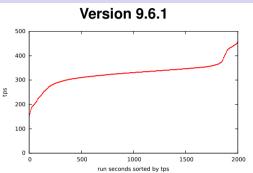
F. Coelho

Introduction
Subject
Application
Definitions
pgbench
Approach

Performance

Connection


Latency Rate & Li


Storage

Combination Distance

Miscellaneou

Wrap-Up
Lessons
Contributions

What is happening?

Buy Now, Pay Later!

transaction surges are absorbed

run seconds sorted by tos

then data are written disk

in-memory + WAL checkpoint

Latency Comparison – 9.5 vs 9.6

Checkpointing

Postgres Latency

F. Coelho

Introduction

Application
Definitions
pgbench

Performance Connection

Latency

Storage

Combinatio
Distance

Miscellaneo

Wrap-Up Lessons

Postgres 9.5 Checkpoint

- data writes spread over some time
- OS choose when to actually write
- until fsync is called...

random I/O

30s delay on Linux

I/O storm - on low-end HDD

Postgres 9.6 Checkpoint

- **sorted** data writes spread over some time
- flush instructions sent regularly (256 kB)
- when fsync is called

sequential I/O

 $checkpoint_flush_after$

ok!

F. Coelho

ntroductio

Subject
Application
Definitions
pgbench

Performance

enormance

Connection

Latency

Rate & Limit

Storage

Destagal

Combinatio

Distance

Oddiability

Miscellaneous

Conclusio

Wrap-Up Lessons

Contributio

Performance Comparisons

Throughput and Latency Control

Rate (tps) and Limit (ms)

pgbench -R 100 -L 100 -N

Postgres Latency

F. Coelho

Introductio

Subject
Application
Definitions
pgbench

Approach

Performance

Connection

Rate & Limit

Protocol Combination

Distance Scalability

Conclusio

Conclusion

Wrap-Up Lessons Contributions Pg 9.5 basic checkpoint

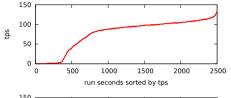
■ slow & skipped 24.0%
■ latency 15.6 ± 158.3 ms

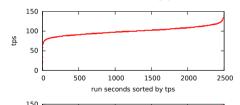
Pg 9.6 sorted checkpoint

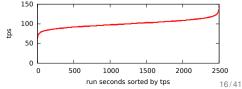
slow & skippedlatency

 $\it 3.6 \pm \it 24.6$ ms

2.7%


Pg 9.6 sorted & flushed checkpoint


slow & skipped


0.5%

latency

 $2.6\pm\,$ 13.8 ms

F. Coelho

ntroductio

Subject
Application
Definitions
pgbench
Approach

Performance

1 0110111141100

Connection

Latency

Rate & Limit

Storage

Otorago

Combinatio

Distance

Ocalability

Miscellaneous

Conclusio

Wrap-Up Lessons

Contribution

Performance Comparisons

Three Storage Options

FILLFACTOR Storage Parameter

Postgres Latency

F. Coelho

Introductio
Subject
Application
Definitions
pgbench
Approach

Performance Connection

Rate & Limit

Protocol
Combination

Scalability
Miscellaneous

Conclusion
Wrap-Up
Lessons
Contributions

CREATE TABLE pgbench_accounts(...) WITH (FILLFACTOR = 100);

FILLFACTOR Usage

■ MVCC: UPDATE = DELETE + INSERT

some free space available in page

but more pages/costs for other operations

up to 3 pages changes

1 inside page change

trade-off

FILLFACTOR = 100

■ throughput 406.9 tps

■ latency $19.7 \pm 12.3 \, \text{ms}$

FILLFACTOR = 95

■ throughput 416.8 tps

■ latency $19.2 \pm 8.3 \, ms$

Hardware

Postgres Latency

F Coelho

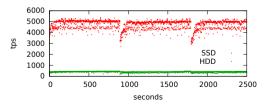
Storage

Wrap-Up

Hard Disk Drive

- mechanics
- fast sequential I/O
- **slow** random I/O

VS


Solid State Disk

- electronics
- fast sequential I/O
- fast random I/O

pgbench -j 4 -c 8 -T 2500 -M prepared ...

Postgres 9.6

HDD $19.7 \pm 12.3 \ ms$ 406.9 tps SSD 4,764.9 tps 1.7 + 2.4 mscheckpoint full page write effect

UNLOGGED TABLE

Can you loose your data?

Postgres Latency

F. Coelho

Storage

Wrap-Up

CREATE UNLOGGED TABLE pgbench_accounts(...);

Standard	ACID
throughput	406.9 tps
latency	19.7 \pm 12.3 ms

UNLOGGED	good luck!
throughputlatency	$5,310.7$ tps 1.5 ± 0.3 ms

F. Coelho

pabench

Rate & Limit

Protocol

Miscellaneous

Wrap-Up

Performance Comparisons

Two Protocol Impacts

Read-Only In-Cache Test

ro3.sql

```
Postgres
Latency
```

F. Coelho

Introduction

Subject
Application
Definitions
pgbench

Performance Connection

Latency Rate & Limit

Storage Protocol

Combination
Distance

Miscellaneou

Conclusion Wrap-Up Lessons

```
\set aid random(1, 100000 * :scale)
\set tid random(1, 10 * :scale)
\set bid random(1, :scale)
BEGIN;
SELECT abalance FROM pgbench_accounts WHERE aid=:aid;
SELECT tbalance FROM pgbench_tellers WHERE tid=:tid;
SELECT bbalance FROM pgbench_branches WHERE bid=:bid;
COMMIT;
```

Operations Queries on 3 tables transfers network protocol syntax analysis plan query optimization cheap if in cache

Protocol

SSL or not

Postgres Latency

F. Coelho

Introductio Subject

Application
Definitions
pgbench

Performance Connection Latency

Storage
Protocol

Combination Distance Scalability

Miscellaneous

Conclusion
Wrap-Up
Lessons
Contributions

SSL Costs

time & €

- negotiation and re-negotiation
- cryptographic functions
- certificate?

Benefits

nake UII!

- Confidentiality
- Integrity
- Authentication

pgbench -j 1 -c 1 -D scale=100 -f ro3.sql -T 30 "host=server ..."

sslmode=require

SSL

■ throughput 709.7 tps

latency 1.407 \pm 0.132 ms

sslmode=disable

clear

throughput

781.6 tps

latency

 $1.277 \pm 0.034 \ ms$

Protocol

Simple vs Prepared

Postares Latency

F Coelho

Protocol

Wrap-Up

```
PREPARE Abal(INT) AS
  SELECT abalance
  FROM pgbench_accounts
  WHERE aid=$1:
-- execute multiple times...
EXECUTE Abal(1);
```

EXECUTE Abal (5432):

EXECUTE Abal(18):

-- prepare once in session

ro3.sql	simple
throughput	709.7 tps
latency	$1.407 \pm 0.132 ms$

Prepare

- temporary one-cmd function
- factor out parse cost
- keep *plan* and *execute*
- pgbench -M prepared ...

ro3.sql	prepared
throughput	860.0 tps
latency	1.161 \pm 0.082 ms

F. Coelho

ntroductio

Application
Definitions
pgbench

Performance

renomiance

Connection

Rate & Limit

Ottom of Li

Storage

Combinations

Dietopoo

Odalability

Miscellaneous

Conclusio

Wrap-Up

Contributio

Performance Comparisons

Four Query Combination Tricks

Query Combination

UPDATE & SELECT

Postgres Latency

F. Coelho

Introductio

Subject
Application
Definitions
pgbench

Performance

Connection

Rate & Limi

Protocol Combinations

Distance Scalability

Miscellaneous

Wrap-Up
Lessons
Contributions

-- update table

UPDATE pgbench_accounts
SET abalance = abalance + :delta
WHERE aid = :aid:

-- get updated data

SELECT abalance FROM pgbench_accounts WHERE aid = :aid:

Standard

throughput

406.9 tps

latency

 $19.7\pm\,$ 12.3 ms

-- combined

UPDATE pgbench_accounts
 SET abalance = abalance + :delta
 WHERE aid = :aid
 RETURNING abalance:

UPDATE RETURNING Option

return updated rows

one parse, plan, execute

Combined Update

throughput

408.2 tps

latency

 $19.6\pm8.7~ms$

Client-combined SQL Queries

Postares Latency

F Coelho

Combinations

```
-- "ro3c.sal" pabench script
set aid random(1, 100000 * :scale)
set tid random(1, 10 * :scale)
set bid random(1, :scale)
BEGIN \:
SELECT abalance FROM
 pgbench_accounts WHERE aid=:aid \:
SELECT tbalance FROM
 pgbench_tellers WHERE tid=:tid \;
SELECT bbalance FROM
 pgbench_branches WHERE bid=:bid \;
COMMIT:
```

ro3.sql	standard
throughput	709.7 tps
latency	1.407 \pm 0.132 ms

Combine

with \:

- embedded semi-colon :
- request with multiple queries
- response with list of results
- avoid request-response loop

ro3c.sql	combined

- throughput 1,311.5 tps
- latency $0.748 \pm 0.132 \, \mathrm{ms}$

Server-Side SQL queries

```
Postgres
Latency
```

F. Coelho

Introduction
Subject
Application
Definitions
pgbench

Performance
Connection
Latency
Rate & Limit

Rate & Limit
Storage
Protocol
Combinations

Combinations
Distance
Scalability

Conclusion

Wrap-Up Lessons Contributions

```
CREATE TYPE Balances
AS (abal INT, tbal INT, bbal INT);

CREATE FUNCTION getBalSQL(INT, INT, INT)
RETURNS Balances AS $$
SELECT
(SELECT abalance
FROM pgbench_accounts WHERE aid=$1),
(SELECT tbalance
FROM pgbench_tellers WHERE tid=$2),
(SELECT bbalance
FROM pgbench_branches WHERE bid=$3)

$$ LANGUAGE SQL;
```

```
-- "ro3sf.sql" pgbench script
\set aid random(1, 100000 * :scale)
\set tid random(1, 10 * :scale)
\set bid random(1, :scale)
SELECT getBalSQL(:aid, :tid, :bid);
```

```
      ro3.sql
      standard

      ■ throughput
      709.7 tps

      ■ latency
      1.407 ± 0.132 ms
```

```
ro3sf.sql SQL call

throughput 1,395.4 \text{ tps}
latency 0.712 \pm 0.075 \text{ ms}
```


Server-Side PL/pgSQL queries

```
Postgres
Latency
```

F. Coelho

```
Introduction
Subject
Application
Definitions
pgbench
Approach
```

Performance Connection

Rate & Limit
Storage

Combinations Distance

Miscellaneo

Conclusio

Wrap-Up Lessons Contributions

```
CREATE FUNCTION
    getBalPL(a INT, t INT, b INT)
  RETURNS Balances AS $$
 DECLARE
    abal INT; tbal INT; bbal INT;
  BEGIN
    SELECT abalance INTO abal
      FROM pgbench_accounts WHERE aid=a:
    SELECT thalance INTO thal
      FROM pgbench_tellers WHERE tid=t:
    SELECT bbalance INTO bbal
      FROM pgbench_branches WHERE bid=b;
    RETURN (abal, tbal, bbal)::Balances:
  END:
$$ LANGUAGE PLpgSQL;
```

```
ro3.sql standard

■ throughput 709.7 tps

■ latency 1.407 ± 0.132 ms
```

```
-- "ro3pf.sql" pgbench script
\set aid random(1, 100000 * :scale)
\set tid random(1, 10 * :scale)
\set bid random(1, :scale)
SELECT getBalPL(:aid, :tid, :bid);
```

PL/pgSQL caches plans!

ro3pf.sql	PL/pgSQL call
throughput	2,485.5 tps
latency	$ extit{0.400} \pm extit{0.055} extit{ ms}$

F. Coelho

ntroductio

Subject
Application
Definitions
pgbench

Performance

Performance

Connection

Rate & Limit

Storogo

Storage

Combinet

Distance

Scalability

Miscellaneous

Conclusion

Wrap-Up

Contributio

Performance Comparisons

Reducting Server Distance

Client-Server Distance

Postgres Latency

F. Coelho

Introductio

Subject
Application
Definitions
pgbench

Performance Connection

Rate & Limit Storage

Distance Scalability

Miscellaneous

Wrap-Up
Lessons
Contributions

Interconnection

TPC-B-Like

LAN

LO

IPC

LAN Local Area Network

LO loopback interface

IPC Inter-Process Communication

403.8 tps

1,133.3 tps

1,243.1 tps

Ethernet localhost

Unix domain socket

2.4 ms 0.9 ms 0.8 ms

Read-Only 3			
LAN	709.7 tps	1.4 ms	
LO	2,515.3 tps	0.4 ms	
IPC	3,607.6 tps	0.3 ms	

F. Coelho

ntroductio

Application
Definitions
pgbench

Performance

Performance

Connection

Latonov

Rate & Limit

Storage

Protocol

Combinatio

Distance

Scalability

Miscellaneous

Conclusion

Wrap-Up

Contributions

Performance Comparisons

Performance Scalability

Clients Scalability

Base

Postgres Latency

F. Coelho

Introduction

Subject
Application
Definitions
papench

Approach

Performance

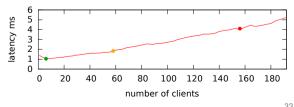
Connection Latency

Rate & Limit Storage Protocol

Distance Scalability

Miscellaneo


Conclusion
Wrap-Up
Lessons


37,639 tps 4.103 ms 156/4

Best Latency 5.748 tps 1.042 ms 6/1

Compromise • 31,494 tps 1.837 ms 58/4

Read-Only 3 – remote SSL simple queries

Clients Scalability

Best

Postgres Latency

F. Coelho

Introductio

Subject
Application
Definitions

Approach

Performance

Connection

Rate & Limit Storage

Combinatio Distance

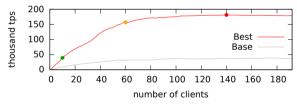
Scalability Miscellaneo

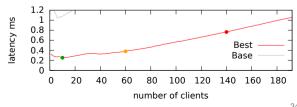
Conclusion

Wrap-Up
Lessons
Contributions

Best Throughput

181,503 tps 0.766 ms 140/4


Best Latency


39,232 tps **0.254 ms** 10/2

Compromise

156,945 tps 0.381 ms 60/4

Read-Only 3 – remote noSSL prepared PL call

F. Coelho

pabench

Rate & Limit

Miscellaneous

Wrap-Up

Performance Comparisons

Miscellaneous Settings

Miscellaneous Settings

App & Postgres

Postares Latency

F Coelho

Miscellaneous

Application framework?

connection persistence cache Memcached Redis

Postgres configuration

change defaults

disk block_size random_page_cost

memory shared_buffers effective_cache_size huge_pages

checkpoint _timeout _completion_target _flush_after

wal max wal size

Miscellaneous Settings

OS & Hardware

Postgres Latency

F. Coelho

Introductio Subject

Application
Definitions
pgbench

Performance Connection

Latency Rate & Limit

Storage Protocol

Distance Scalability Miscellaneous

Miscellaneous

Conclusion
Wrap-Up
Lessons
Contributions

OS tweak and choose

FS XFS ext4 Btrfs ZFS, mount options

IO io scheduler, queue length, write delay, dirty bytes...

others NUMA, ...

Hardware

expensive is (probably) better

diskS tables wal logs, HDD-with-cache, SSD

tweaking read ahead, write flush

RAID with large caches, BBU

F. Coelho

Introductio

Application

Definitions

pgbench

Daufa

Performance

Connection

Latency

Rate & Lim

Storage

Protocol

Combination

Dietanee

Scalability

Miscellaneous

Conclusion

Wrap-Up

Contributions

Conclusion

Wrap-up

HDD -c SSL

HDD -c noSSL

Postares Latency

F. Coelho

Subject	HDD SSL	105.4	9.5	709.7	1.41
Application Definitions	SSD SSL	403.8	2.47	695.1	1.44
pgbench	SSD noSSL	465.4	2.15	820.1	1.22
Approach	+ prepared	548.1	1.82	974.0	1.02
Performance Connection	returning	529.4	1.89	_	-
Latency Rate & Limit	+ prepared	681.2	1.47	-	_
Storage	combined	857.8	1.15	1,536.4	0.64
Protocol Combinations	- SQL func	940.3	1.06	1,818.1	0.55
Distance Scalability	+ prepared	957.9	1.04	2,144.7	0.46
Miscellaneous	– PL func	1,279.4	0.78	2,778.0	0.36
Conclusion	+ prepared	1,323.2	0.75	3,040.4	0.33
Wrap-Up Lessons	localhost	1,907.6	0.52	10,006.8	0.10
Contributions	socket	2,273.1	0.44	11,545.5	0.09
				•	

TPC-B-like

ms

27.7

17.7

tps

36.1

56.4

Read-Only 3

ms

18.96

9.08

tps

52.7

110.1

- connection
- HDD to SSD
- SSL to none
- simple to prepared
- combinations...
- remote to local

 \times 63 to \times 219

and scaling effects

Lessons

Things to Bring Home

RW load ACID

RO load pg as a cache manager

Postares Latency

F Coelho

Laccone

NoTPS not only TPS latency matters! latency-throughput compromise Performance experiment and measure do not assume! pgbench is improving... Postgres version 9.6! sorted and flushed checkpoints High costs network, parse & plan

 $SSD \gg HDD$ SSD = HDD

in-memory OLTP load

Contributions

provided or provoked

Postares Latency

F Coelho

Wrap-Up

Contributions

About Core

- sorted checkpoints
 - flushed checkpoints

About pgbench

- expressions
- mixed and weighted scripts and builtins
- better statistics
- improved usability
- rate and limit load
- debug...

& Andres Freund

Measuring and Reducing Postgres Transaction Latency

(updated version)

Fabien Coelho

MINES ParisTech, PSL Research University

pgDay Paris - March 23, 2017