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Abstract An algorithm with the anytime property has an approximate solution
always available; and the longer the algorithm runs, the better the solution be-
comes. Anytime solving is important in domains such as aerospace, where time
for reasoning is limited and a viable (if suboptimal) courseof action must be al-
ways available. In this paper we study the anytime behaviourof solving a mixed
CSP, an extension of classical CSP that accounts for uncontrollable parameters,
using a benchmark problem from aerospace sub-system control. We propose two
enhancements to the existing decomposition algorithm: heuristics for selecting
the next uncertain environment to decompose, and solving ofincrementally larger
subproblems. We evaluate these enhancements empirically,showing that a heuris-
tic on uncertainty analogous to ‘first fail’ gives the best performance. We also
show that incremental subproblem solving provides effective anytime behaviour,
and can be combined with the decomposition heuristics.

1 Introduction

The increasing desire for autonomy in aerospace systems, such as Uninhabited Air-
craft Vehicles (UAVs), will lead to increasing complexity in planning, scheduling, and
control problems [14]. Constraint programming techniqueshave proved effective for
addressing such problems in the aerospace domain (e.g. [13,15]). The real-world re-
quirements of such problems mean that preferences, uncertainty, and dynamic change
must be handled. For this, the classical constraint satisfaction problem (CSP) is inade-
quate. One extension to handle uncertainty is the mixed CSP framework, introduced by
Fargier et. al. [4, 5] for decision making with incomplete knowledge.

Our motivation comes from a problem in planning the control of aerospace equip-
ment. In order to enhance autonomous behaviour, the plan produced must take account
of environmental uncertainty the aerospace system may encounter. A constraint-based
formulation as a mixed CSP is given in [20], where uncontrollableparametersare used
to model the uncertain evolution of physical quantities, such as temperature.

An algorithm with theanytimeproperty has an approximate solution always avail-
able; and the longer the algorithm runs, the better the solution becomes [1]. If the al-
gorithm is allowed to run to completion, a final solution is obtained. For the aerospace
domain, with its deadlines on response time, anytime behaviour is highly desirable [14].

This paper presents an experimental study of anytime solving of mixed CSPs. Specif-
ically, we study the performance of the existing decomposition algorithm of [5] on our
aerospace control planning problem as a case study. We describe two enhancements to
the use of the algorithm designed to improve its anytime performance, and empirically



assess their value. The two enhancements are decompositionheuristics for exploring
the parameter space of uncertain environments, and incremental solving of the plan-
ning problem for successive horizons. The results show thata heuristic on uncertainty
analogous to ‘first fail’ gives the best performance. They also show that incremental
subproblem solving provides effective anytime behaviour,and can be combined with
the decomposition heuristics.

We begin by summarising the mixed CSP framework and the decomposition algo-
rithm (Section 2), and then briefly summarise our motivationfor anytime solving and
outline our case study problem (Section 3). We present the two algorithmic extensions
(Section 4) and empirically assess them (Section 5); and a discussion of the results
concludes the paper (Section 6).

2 Mixed CSP and the Decomposition Algorithm

2.1 Mixed CSP

Fargier et. al. [4, 5] introduced themixed CSPframework, an extension to the classi-
cal CSP for decision making with incomplete knowledge.1 In a mixed CSP, variables
are of two types: decision and non-decision variables. The first type are controllable by
the agent: their values may be chosen. The second type, knownasparameters, are un-
controllable: their values are assigned by extrogeneous factors. These factors are often
referred to as ‘Nature’, meaning the environment, another agent, and so on.

Formally, a mixed CSP extends a classical finite domain CSP


V ;D ;C �:

Definition 1 (Mixed CSP [5]).A mixed CSPis a 6-tupleP = hΛ;L;V;D;K ;C i where:

– Λ = fλ1; : : : ;λpg is a set of parameters
– L = L1��� ��Lp, where Li is the domain ofλi

– V = fx1; : : : ;xng is a set of decision variables
– D = D1��� ��Dn, where Di is the domain of xi
– K is a set ofdata constraintsinvolving only parameters
– C is a set of constraints, each involving at least one decisionvariable

We say a complete assignment of the parameters is arealisation (or world), and
a complete assignment of the decision variables is adecision(or potential solution).
We say a realisation ispossibleif the classical CSPhΛ;L;K i is consistent, i.e. has at
least one solution (otherwise the realisation isimpossible). For every realisationr, the
classical CSP



V ;D ;C � formed as the projection ofP under realisationΛ r is the

realised(or candidate) problem induced byr from P . We say a realisation isgoodif the
corresponding realised CSP is consistent (otherwisebad). We say a decisiond coversa
realisationr if d is a solution to the realised CSP induced byr.

The outcome sought from a mixed CSP model is arobust solution: intuitively, one
solution that satisfies all constraints under as many realisations as simultaneously pos-
sible. However, the nature of this outcome depends on when knowledge about the state

1 The earlier work [4] associates a probability distributionwith each parameter; we follow the
later work in which a (discrete) uniform distribution is assumed.
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of the world will be acquired. If the realisation is observedbefore the decision must
be made, we are in the case offull observability(FO). If the realisation is observed
only after the decision must be made, we are in the case ofno observability(NO). The
intermediate cases are not considered in [4, 5].2

In the case of full observability, the outcome sought is aconditional decision(or
policy). This is a map between realisations and decisions that specifies, for a set of
realisationsR, a decisiond for eachr 2 R such thatd coversr. We then say that the
conditional decisioncovers R. Such a conditional decision isoptimal if it covers every
good realisation ofP ; it is completeif further it covers all possible realisations. It is
shown in [5] that deciding consistency of a binary mixed CSP is co-Σ2 complete.

2.2 Decomposition Algorithm

We say an algorithm has ananytime property[1] if:

1. An answer is available at any point in the execution of the algorithm
2. The quality of the answer improves with an increase in execution time

Theperformance profileof an algorithm is a curve that denotes the expected output
quality Q(t) with execution timet [2]. The concept of an anytime algorithm, one that
has an anytime property, was developed for time-critical planning and scheduling.3 The
original formulation imposed three additional requirements:

1. Ability to be preempted
2. Continuity of the functionQ(t) from time to quality
3. Diminishing marginal improvement of quality with time

An algorithm to find an optimal conditional decision for a mixed CSP under full ob-
servability is presented in [4, 5]. We call this thedecomposition algorithmand denote it
decomp. Because of the complexity of finding such a decision — both computational
effort, and size of the outcome (in the worst case, one decision for every possible real-
isation) —decomp is designed as an anytime algorithm. Intuitively, it incrementally
builds a list of decisions that eventually cover all good realisations. We omit discussion
of some for us unnecessary subtleties about the algorithm; for details, see [5].

Central to the method are sets of disjoint realisations calledenvironments, and their
judicious decomposition, which is achieved with a method called sub-domain subprob-
lem extraction[6]. Formally, anenvironmentis a Cartesian productl1� : : : lp, where
l i � Li . For example, ifL1 = L2 = fa;b;c;dg, then an environment isfb;dg�fc;dg.
2 In temporal CSP, (FO) corresponds to weak controllability of STPUs and (NO) to strong con-

trollability; dynamic controllability [12] is not considered for mixed CSPs.
3 In the literature, two types of anytime algorithms have beendefined. Aninterruptiblealgorithm

is defined as above. Acontractalgorithm must be given in advance an upper limit on runtime;
it will terminate within this limit with a partial solution.We consider interruptible algorithms
because in the aerospace domain we do not necessarily have anestimate of available runtime
before execution begins. Moreover, an interruptible algorithm can be converted to a contract
algorithm with a constant factor overhead.
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Algorithm 1 Decomposition for an optimal conditional decision
1: B /0 fbad realisationsg
2: D /0 fdecision–environment pairsg
3: E L1��� ��Lp fenvironments still to be coveredg
4: repeat
5: Choose an environmente from E
6: let E be constraints that enforcee
7: let P be the CSP



Λ[V ;L[D;K [C [E �

8: if P is consistentthen
9: let s bea solution ofP

10: let v bes projected onto the domain variablesV
11: R covers(v) frealisations covered by vg
12: Add the pair(v;R) to D
13: E Se02E decompose(e0;R)
14: else fall realisations in e impossibleg
15: Adde to B
16: until E = /0 fall possible realisations coveredg
17: return (B;D)
The result is an anytime algorithm that incrementally computes successively closer ap-
proximations to an optimal decision. The number of realisations covered by the deci-
sion grows monotonically, and if allowed to finish without interruption, the algorithm
returns an optimal conditional decision. However, the algorithm is approximate in that
the conditional decision obtained is not guaranteed to haveminimal cardinality.

Pseudocode fordecomp is given as Algorithm 1. In line 5 we pick an environment
not yet covered. It is possible if at least one of its realisations is possible. If so, we
find a decision that covers one of its realisations (line 9), compute the other realisations
covered by the decision (line 11), and remove them from the environment (line 13). On
the other hand, if the environment is bad (i.e. all its realisations are bad), we mark all
its realisations so in line 15.

The consistency test in line 8 should be performed by instantiating the parameters
Λ first.4 In fact, the consistency test and subsequent search for one solution to the CSP
in line 9 can be combined, since ifP has a solution then it is by definition consistent.

The functioncovers(d) in line 11 calculates the realisations covered by a decisiond.
Operationally,covers(d) can be specialised for the constraints of the problem. In partic-
ular, it is simplified when each constraint contains at most one parameter. In this case,
the set of realisationsR covered byd is a Cartesian product of subsets of the param-
eter domainsL. Hence we can buildR by considering each parameter independently;
moreover,R is an environment with no further computation.

The functiondecompose(e0;R) in line 13 implements sub-domain subproblem ex-
traction to decomposee0 by R, returning a set of distinct environments [6]; the details
are unnecessary for this paper. Decomposing an environmente by an environmentR

4 This is because we must know whether the CSPhΛ;L;K i is consistent. If so, environment
e contains at least one possible realisation; otherwise we donot proceed withe. This is a
necessary condition for the correctness proof of the algorithm [5].

4



(attitude control)

Stable

2. Orbit Control

Reset

4. Safe

3. Pointing

0. Reseting

Steady

1. Attitude and Orbit Control

AOC Activation

(a) AOCS executive

5. Cool down1.Nominal thrust

6. Reseting

2. Heat limit

0. Boost
3. Warning

Reset

Alarm

Thrust

Nominal temp.

Heat

4. Emergency
cooling

(b) Thruster

5. Alarm

Acquire

0. Safe

3. Acquisition 6. Stand−by

Check test
1. Calibration

Enable

Observe

2. Ready

4. Observation
Reset

(c) Star tracker

Figure 1.Discrete automata representing the behaviour of three spacecraft sub-systems

means producing a set of distinct environmentsS that together cover all realisations in
e not covered byR.

Using results about environments from [6], in [5] Algorithm1 is proved sound and
complete: it eventually terminates, and if allowed to terminate, it returns a conditional
decision that covers all good realisations. Moreover, if stopped at any point,D contains
decisions for (zero or more) good realisations andB contains only bad realisations.

3 Problem Domain

From the introduction, recall that our motivation for studying mixed CSPs comes from
the aerospace planning problem described in [20]. The problem is called theSub-system
Control Planning Problem(SCPP); a detailed description is found in [20, 19].

As noted earlier, planned future autonomy in the aerospace domain brings strong
anytime requirements. Autonomous systems are characterised by limited computational
power and limited online response time. Moreover, due to contingent events that may
unexpectedly occur, a safe course of action is required to beimmediately available.

In this paper we focus on the anytime solving of the constraint model of the SCPP.
This model, derived from a high-level specification of a problem instance as a finite state
automaton, is a mixed CSP. Importantly, although the constraints may be complicated,
each constraint involves at most one parameter. The parameters arise from uncertain
environment conditions, such as temperature variation, ineach state of the automaton.

The model includes linear summation constraints (arising from path conservation
constraints), implication constraints, channelling constraints; and constraints describing
evolution of physical quantities according to the environmental uncertainty, such as:

Θi+1 = E j � (Θi +Ti∆ j) (1)

whereΘi and Ti are discrete variables,Ei are Boolean, and∆ j are parameters. The
details of the model are not central to this paper; they may befound in [19].

The outcome sought for the SCPP is a conditional plan that covers the anticipated
environmental uncertainty.5 This corresponds to the conditional decision of a full ob-
servability mixed CSP. For a given aerospace sub-system, aninstance of the SCPP is

5 Environmental uncertainty should be distinguished from the technical definition of anenviron-
mentabove as a set of realisations.
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Figure 2. Performance profile curves of idealised anytime behaviour

parametrised by the planning horizon,H 2N. Additionally, there is an minimum perfor-
mance requirement on feasible solutions. This requirementcorresponds to a percentage
of the maximum possible performance (which can be computed apriori); it is imposed
as an additional hard constraint in the model.

Figures 1(b)–1(c) show three discrete state automata (for illustration only). The
automata represent the behaviour of three different, representative but simplified space-
craft sub-systems. These represent, respectively, an Attitude and Orbit Control System
(AOCS), a thruster (Thruster), and a directional sensor (Tracker). We build a mixed
CSP model of each automaton. The performance of solving these mixed CSPs will be
the benchmark for our empirical study.

4 Enhancing the Anytime Behaviour ofdecomp

Summarising, we have recalled the algorithm we calldecomp for a full observability
mixed CSP (Algorithm 1), and described a model of our motivating problem as such
a mixed CSP. We now introduce two orthogonal extensions ofdecomp designed to
improve its anytime performance for the requirements arising in aerospace domain.

To see what we mean by improve anytime behaviour, consider the performance pro-
files shown in Figure 2. The horizontal axis depicts timet and the vertical axis solution
quality Q(t). The straight line 4 represents the anytime behaviour of an algorithm that
monotonically increases solution quality at a constant rate. The curves 1–3 depict better
anytime behaviour than 4, with 1 the best, because solution quality rises more sharply
earlier in the solving. In contrast, curve 5 depicts a poor anytime behaviour. Thus mov-
ing from 4 to 2, for instance, is an improvement in anytime behaviour. Note this is true
even though both algorithms return the same solution quality at the end of the solv-
ing period shown. As a secondary aim, we would like, if possible, to have an earlier
termination time in addition to improved anytime behaviour.
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4.1 Environment Selection Heuristic

Recall thatdecomp is an anytime algorithm in terms of the number of realisations
covered by the conditional decision it computes. If allowedto run to termination, it
produces an optimal conditional decision; if stopped earlier, the conditional decision
covers a subset of the good realisations.

In [5] it is noted that heuristics may be used in line 5 of Algorithm 1, although
none are proposed. The algorithm terminates when the setE is empty. Every iteration
through the main loop removes one environmente from E. Judicious choice ofe may
speed the termination or improve the anytime behaviour, or both.

We propose five heuristics for environment selection:

– random: pick the next environment at random. This is our default heuristic, used
as a baseline to evaluate the others.

– most uncertainty: pick the environment with the most uncertainty. That is, choose
e to maximise∏λi2ejLi j.

– least uncertainty: pick the environment with the least uncertainty. That is, choose
e to minimise∏λi2ejLi j.

– most restricting: pick the environment that most constraints the variables’domains.
That is, for eache, impose the constraintsE in line 6 of Algorithm 1, and compute
∏i jDi j. Choosee to minimise this quantity.

– least restricting: pick the environment that least constraints the variables’ domains.
That is, impose the constraintsE , compute∏i jDi j, and choose the maximisinge.

These heuristics are analogous to variable selection heuristics in finite domain CSP
solving. Pursuing this link, we also considered a heuristicto pick the most or least
constraining environment. That is, the environment whose realised CSPs are the most or
least constrained (precisely, maximise or minimise the sumof a constrainedness metric,
summed over all the realised CSPs corresponding to realisations in the environment).
However, preliminary experiments indicated that such a heuristic has poor performance.
This seems to be caused by only a weak correlation between theconstrainedness of the
realised CSPs that an environment leads to, and the difficulty of solving the whole
mixed CSP. Thus we did not consider such a heuristic further.

4.2 Incremental Horizon

The SCP problem is naturally parametrised by the planning horizon, H. For a given
horizon, runningdecomp to completion provides the sought optimal conditional plan
for horizonH. Interrupting the algorithm at any point provides a partialplan.

A second means of ensuring anytime behaviour is to iteratively plan for longer
horizons,h= 1; : : : ;H. We permit the algorithm to be interrupted at the completionof
any horizonh. The resulting complete condition plan for horizonh provides the initial
steps of a complete plan for horizonH. We also permitdecomp to be interrupted
before completing a horizon. The plan for horizonh then consists of the decisions for
the covered realisations, together with, for the uncoveredrealisations, the decisions
from horizonh�1.
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Algorithm 2 Anytime computation by incremental plan horizon
1: S /0
2: for h= 1 toH do
3: let Sh beoutput ofdecomp on horizonh automaton
4: if decomp ran to completionthen
5: S Sh
6: else
7: fkeep existing decisions for uncovered realisationsg
8: for each realisation covered bySh do
9: updateSby Sh

10: return S

More specifically, the time interval[0: : :h℄; h� H defines a subproblem which is a
subpart of the original SCP problem instance. The subproblem is obtained by ignoring
decision variables and parameters in the interval[h+ 1;H℄, and relaxing associated
constraints. Theincremental horizonmethod starts fromh= 1, and incrementsh each
time the subproblem is successfully solved. If interrupted, the method thus provides a
plan up to time eventh�1. Hence, the solution quality is measured by the (cumulative
total) time to complete construction of the plan for horizonh�1.

Algorithm 2 summarises the method. As stated, conceptuallyit operates by solving
incrementally larger subproblems. The advantage is that, in a given computation time,
the plan produced may cover more of the good, possible realisations, compared to the
plan produced bydecomp for horizonH in the same time.

Indeed, suppose a plan for horizonH is desired and computation time is limited toT
(which we do not assume is known to the algorithm). Running Algorithm 1 for timeT
might give a conditional plan that covers 70% of realisations, say. The conditional plan
it yields is not optimal. Instead, running Algorithm 2 for the same time might give a
plan that covers only 40% of realisations with a horizon-H decision, but all realisations
are covered with some decision: say that for horizon-(H�1) decision. Thus we have
an optimal conditional plan and, as we begin its execution, we can undertake further
computation to extend the horizon-(H�1) decisions to horizon-H decisions.

The incremental horizon method is orthogonal to the environment selection heuris-
tics. Any heuristic may be used in the invocation ofdecomp in line 3 of Algorithm 2.
In the experimental results that follow, we thus will evaluate the behaviour of the in-
cremental horizon method both with the defaultrandomheuristic, and with the others
proposed above.

5 Experimental Results

In this section we report an empirical assessment of thedecomp algorithm on the SCP
problem. The aim of the experiments was to evaluate: (1) the impact of the environment
selection heuristics on anytime behaviour; and (2) the effectiveness of incremental hori-
zon for producing anytime behaviour.

The results reported were obtained on a 2GHz linux PC with 1GBof memory, using
ECLiPSe version 5.7 [3]; timings are in seconds. The SCPP instances were the three au-
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Table 1.Characteristics of the benchmark problem instances

uncertainty per horizon
automaton states per horizonA B C timeout

AOCS 5 2 4 5 200s
Thruster 8 7 14 23 2000s
Tracker 7 6 9 16 18000s

tomata given in Figure 3. Table 1 summarises their characteristics. For each automaton,
we considered three degrees of uncertainty: moderate, average and large, denotedA–
C respectively. We also considered performance requirements between 20–80% (recall
Section 3). This gives two parameters for each problem instance. We imposed a timeout
on any single run of Algorithm 1, depending on the complexityof the automaton; the
values are also given in Table 1.

5.1 Environment Selection Heuristic

We first consider the five environment selection heuristics described in Section 4.1.
We measure quality by the number of good and possible realisations covered by the
conditional decision, plus the number of bad realisations marked as bad, after a given
computation time. That is, the quality isQ1(t) = jDj+ jBj, whereD andB are as in the
notation of Algorithm 1.

Figures 3(a)–5(b) show the quality (realisations covered)versus solving time (ms).
The vertical axis is shown on a log scale, i.e. logQ1(t). Figure 3(a) shows the typical
result for theAOCS instance: the best heuristic isleast uncertainty, followed bymost
restricting; these are both better thanrandom. The worst heuristic isleast restricting;
most uncertaintyis slightly better.

Figures 3(b)–4(b) demonstrate the performance of the heuristics for Thruster is
more varied. For most instances of uncertainty, performance, and horizon,least uncer-
tainty is the best heuristic andrandomis second or third. However, for some instances,
least uncertaintydoes not have maximalQ1(t) for all t. First look at Figures 4(a)–4(b).
These graphs are for instances just before and just after infeasibility (which here occurs
beyond horizon 6). In the former,least uncertaintyis best at all times. In the latter, how-
ever, it is inferior to some other heuristics (in particular, to random) until about 2500ms,
after which it strongly dominates.most restrictingexhibits poor behaviour.

Next look at the rare result shown in Figure 3(b). In this critically constrained prob-
lem, randomis best at first, until overtaken by firstmost uncertaintythenleast restrict-
ing. Further,least uncertaintyexhibits poor anytime performance. While exceptional,
this instance indicates that no one heuristic always dominates. As in classical CSPs, the
choice of heuristic is itself heuristic.

The results forTracker confirm those forAOCS. Figures 5(a)–5(b) showleast un-
certaintyas the best heuristic. Note how it not only has a better performance profile, but
also achieves a much earlier termination time than the otherheuristics.
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domains (mostand least restricting) vary in effectiveness between problem instances.
For example,most restrictingis acceptable in Figure 3(a) but very poor in Figure 4(a).

Thirdly, the results suggest that incremental horizon is effective in providing any-
time behaviour, particularly for lesser horizons. When thesubproblems becomes hard
(e.g. fromh = 4 for Thruster), the rate of increase of solution quality declines. This
is more marked when the performance requirement is higher, perhaps a result of the
problem then being over-constrained.

Since the SCPP is easy to solve for modest horizons, a possible approach might be:
begin with Algorithm 2 and therandomheuristic (which has no overhead to compute),
and later switch to Algorithm 1 with theleast uncertaintyheuristic (the most effective
overall). Further experimental work is needed to investigate this hybrid possibility.

6 Conclusion and Future Work

Anytime behaviour is an important requirement for the aerospace domain. Motivated
by a planning problem for aerospace equipment control, thispaper studied the any-
time solving of full observability mixed CSPs. We proposed two enhancements to the
existing decomposition algorithm: heuristics for selecting the next environment to de-
compose, and solving of incrementally larger subproblems.

The heuristics we considered are applicable to solving any mixed CSP by the de-
composition algorithm. Overall, the heuristicleast uncertainty, which is analogous to
first fail for finite domain CSPs, gives the best performance.

The incremental horizon method we considered is specialised for the SCP problem.
However, the broader idea of problem decomposition into incremental subproblems, as
a means of anytime solving, applies to any mixed CSP for whicha suitable sequence of
subproblems can be identified.

Anytime algorithms for classical CSPs have been built by considering the CSP as a
partial CSP, and using branch-and-boundor local search [17]. For finding robust ‘super’
solutions, anytime algorithms have also been built with branch-and-bound [8]. Anytime
solving is related to incremental solving of CSPs (e.g. [16]). In the latter, however, the
focus is to efficiently propagate the changes implied when a variable’s domain changes.

In future work, we want to complete the investigation of incremental horizon by
evaluating how often it produces plans for horizonH based on partial plans for a lower
horizon, as described in Section 4.2. We would also like to evaluate the methods con-
sidered here on other SCPP instances (in particular, the hard Instrument instance de-
scribed in [19]) and, importantly, on mixed CSPs arising from other problems.

The ‘cross-over’ between different heuristics over time suggest that meta-reasoning
on the solving algorithm may yield the best anytime behaviour in practice. For instance,
the hybrid approach suggested above. More generally, this reasoning can take into con-
sideration [7, 9]: the current state of the solution (such aswhat percentage of realisations
it presently covers); the expected computation time remaining, if an estimate is avail-
able; the cost of computing the different heuristics; and the opportunity of switching
between algorithms during solving, as noted earlier.

Driven by our motivational problem, in this paper we have considered only the
full observability case; an interesting direction would beto consider anytime solving
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in the no observability case. Here, the outcome sought is a single robust solution that
covers as many realisations as possible. As such, there are links not only to anytime
methods for robust solutions to CSPs [8], but also to solvingmixed CSPs with proba-
bility distributions over the parameters [4], which are an instance of the stochastic CSP
framework [18]. For instance, the scenario sampling methods for stochastic CSPs give
the opportunity for an anytime algorithm [10].
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